|
|
|
Synthesis of silicon nanowires supported Ag nanoparticles and their catalytic activity in photo-degradation of Rhodamine B |
Yueyin SHAO1( ), Yongqian WEI1, Zhenghua WANG2 |
| 1. Laboratory Material Supply Centre, Soochow University, Suzhou 215123, China; 2. Anhui Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China |
|
|
|
|
Abstract Silver modified silicon nanowires were obtained and employed as photo-catalysts in the degradation of Rhodamine B (RhB), which demonstrated the excellent catalytic activity. These catalysts may be recycled and reused.
|
| Keywords
silicon nanowires
Ag nanoparticles
Rhodamine B (RhB)
|
|
Corresponding Author(s):
SHAO Yueyin,Email:yyshao@suda.edu.cn
|
|
Issue Date: 05 June 2011
|
|
| 1 |
Rondinini S, Vertova A. Electrocatalysis on silver and silver alloys for dichloromethane and trichloromethane dehalogenation. Electrochimica Acta, 2004, 49(22-23): 4035–4046 doi: 10.1016/j.electacta.2003.12.061
|
| 2 |
Adhyapak P V, Karandikar P, Vijayamohanan K, Athawale A A, Chandwadkar A J. Synthesis of silver nanowires inside mesoporous MCM-41 host. Materials Letters, 2004, 58(7-8): 1168–1171 doi: 10.1016/j.matlet.2003.09.008
|
| 3 |
Carotenuto G, Pepe G P, Nicolais L. Preparation and characterization of nano-sized Ag/PVP composites for optical applications. European Physical Journal B, 2000, 16(1): 11–17 doi: 10.1007/s100510070243
|
| 4 |
Grubisha D S, Lipert R J, Park H Y, Driskell J, Porter M D. Femtomolar detection of prostate-specific antigen: an immunoassay based on surface-enhanced Raman scattering and immunogold labels. Analytical Chemistry, 2003, 75(21): 5936–5943 doi: 10.1021/ac034356f
|
| 5 |
García-Vidal F J, Pendry J B. Collective theory for surface enhanced Raman scattering. Physical Review Letters, 1996, 77(6): 1163–1166 doi: 10.1103/PhysRevLett.77.1163
|
| 6 |
Jana N R, Gearheart L, Murphy C J. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Advanced Materials, 2001, 13(18): 1389–1393 doi: 10.1002/1521-4095(200109)13:18<1389::AID-ADMA1389>3.0.CO;2-F
|
| 7 |
Jana N R, Gearheart L, Murphy C J. Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles. Chemistry of Materials, 2001, 13(7): 2313–2322 doi: 10.1021/cm000662n
|
| 8 |
Murphy C J, Jana N R. Controlling the aspect ratio of inorganic nanorods and nanowires. Advanced Materials, 2002, 14(1): 80–82 doi: 10.1002/1521-4095(20020104)14:1<80::AID-ADMA80>3.0.CO;2-#
|
| 9 |
Jin R C, Cao Y C, Hao E C, Métraux G S, Schatz G C, Mirkin C A. Controlling anisotropic nanoparticle growth through plasmon excitation. Nature, 2003, 425(6957): 487–490 doi: 10.1038/nature02020
|
| 10 |
Maillard M, Huang P R, Brus L. Silver nanodisk growth by surface plasmon enhanced photoreduction of adsorbed. Nano Letters, 2003, 3(11): 1611–1615 doi: 10.1021/nl034666d
|
| 11 |
Hua F, Cui T H, Lvov Y. Lithographic approach to pattern self-assembled nanoparticle multilayers. Langmuir, 2002, 18(17): 6712–6715 doi: 10.1021/la025856r
|
| 12 |
Haynes C L, Van Duyne R P. Dichroic optical properties of extended nanostructures fabricated using angle-resolved nanosphere lithography. Nano Letters, 2003, 3(7): 939–943 doi: 10.1021/nl0342287
|
| 13 |
Porter L A, Choi H C, Ribbe A E, Buriak J M. Controlled electroless deposition of noble metal nanoparticle films on germanium surfaces. Nano Letters, 2002, 2(10): 1067–1071 doi: 10.1021/nl025677u
|
| 14 |
Keir R, Igata E, Arundell M, Smith W E, Graham D, McHugh C, Cooper J M. SERRS. In situ substrate formation and improved detection using microfluidics. Analytical Chemistry, 2002, 74(7): 1503–1508 doi: 10.1021/ac015625+
|
| 15 |
Zhu G S, Wang C, Zhang Y H, Guo N, Zhao Y Y, Wang R W, Qiu S L, Wei Y, Baughman R H. Highly effective sulfated zirconia nanocatalysts grown out of colloidal silica at high temperature. Chemistry, 2004, 10(19): 4750–4754 doi: 10.1002/chem.200400288
|
| 16 |
Liu Z Q, Zhou W Y, Sun L F, Tang D S, Zou X P, Li Y B, Wang C Y, Wang G, Xie S S. Growth of amorphous silicon nanowires. Chemical Physics Letters, 2001, 341(5-6): 523–528 doi: 10.1016/S0009-2614(01)00513-9
|
| 17 |
Kamins T I, Williams R S, Chen Y, Chang Y L, Chang Y A. Chemical vapor deposition of Si nanowires nucleated by TiSi2 islands on Si. Applied Physics Letters, 2000, 76(5): 562–564 doi: 10.1063/1.125852
|
| 18 |
Shao M W, Hu H, Li M, Ban H Z, Wang M Y, Jiang J. Karman vortex street assisted patterning in the growth of silicon nanowires. Chemical Communications, 2007, (8): 793–794 doi: 10.1039/b613473d
|
| 19 |
Li C P, Sun X H, Wong N B, Lee C S, Lee S T, Teo B K. Silicon nanowires wrapped with Au film. Journal of Physical Chemistry B, 2002, 106(28): 6980–6984 doi: 10.1021/jp014085h
|
| 20 |
Cui Y, Wei Q Q, Park H K, Lieber C M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science, 2001, 293(5533): 1289–1292 doi: 10.1126/science.1062711
|
| 21 |
Ren X, Meng X W, Chen D, Tang F Q, Jiao J. Using silver nanoparticle to enhance current response of biosensor. Biosensors & Bioelectronics, 2005, 21(3): 433–437 doi: 10.1016/j.bios.2004.08.052
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|