Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    2011, Vol. 4 Issue (2) : 188-194    https://doi.org/10.1007/s12200-011-0163-8
RESEARCH ARTLCLE
Rapid growth of t-Se nanowires in acetone at room temperature and their photoelectrical properties
Zhenghua WANG(), Shiyu ZHU
Anhui Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
 Download: PDF(495 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Trigonal selenium (t-Se) nanowires with uniform sizes were obtained through the conversion from freshly prepared amorphous selenium (a-Se) nanoparticles in acetone at room temperature. The experimental results show that some organic solvents, such as acetone and pyridine can dramatically promote the conversion from a-Se to t-Se, and t-Se with different morphologies like nanowires and microrods can be obtained. Acetone is an appropriate medium for obtaining t-Se nanowires in a short time. The as-prepared t-Se nanowires were characterized and confirmed by means of powder X-ray diffraction (XRD), scanning electron microscope (SEM), and transmission electron microscope (TEM). The photoelectrical properties of t-Se nanowires were investigated, which shows their potential uses in the fabrication of micro-devices or photo-switches.

Keywords trigonal selenium      nanowires      photoelectrical properties     
Corresponding Author(s): WANG Zhenghua,Email:zhwang@mail.ahnu.edu.cn   
Issue Date: 05 June 2011
 Cite this article:   
Zhenghua WANG,Shiyu ZHU. Rapid growth of t-Se nanowires in acetone at room temperature and their photoelectrical properties[J]. Front Optoelec Chin, 2011, 4(2): 188-194.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-011-0163-8
https://academic.hep.com.cn/foe/EN/Y2011/V4/I2/188
Fig.1  (a) XRD pattern of the prepared t-Se nanowires(b) Raman scattering spectrum of the Se nanowires corresponding to trigonal phase of Se
Fig.1  (a) XRD pattern of the prepared t-Se nanowires(b) Raman scattering spectrum of the Se nanowires corresponding to trigonal phase of Se
Fig.2  (a), (b) SEM images of t-Se nanowires; (c) TEM image of t-Se nanowires; (d) HRTEM image of the t-Se nanowires, inset shows the corresponding SAED pattern
Fig.2  (a), (b) SEM images of t-Se nanowires; (c) TEM image of t-Se nanowires; (d) HRTEM image of the t-Se nanowires, inset shows the corresponding SAED pattern
soventconversion timeproduct morphologyproduct color
water---
acetonitrileone weeknanowiresdark red
ethanolone daynanowiresdark red
acetonetwo hoursnanowiresdark red
pyridineless than five secondsmicrorodsblack
ethylenediamineless than five secondsmicrorodsblack
Tab.1  Effect of different solvents on conversion from a-Se to t-Se
Fig.3  SEM images. (a) a-Se sample; (b) t-Se nanowires obtained in acetonitrile; (c) t-Se nanowires obtained in ethanol; (d) t-Se nanowires obtained in acetone; (e) t-Se microrods obtained in pyridine; (f) t-Se microrods obtained in ethylenediamine
Fig.3  SEM images. (a) a-Se sample; (b) t-Se nanowires obtained in acetonitrile; (c) t-Se nanowires obtained in ethanol; (d) t-Se nanowires obtained in acetone; (e) t-Se microrods obtained in pyridine; (f) t-Se microrods obtained in ethylenediamine
Fig.4  (a) curves of the t-Se nanowires film measured in a dark box and under illuminated by using a tungsten lamp (220 V, 25 W); (b) curves of the a-Se nanopartilces film measured in a dark box and under illuminated
Fig.4  (a) curves of the t-Se nanowires film measured in a dark box and under illuminated by using a tungsten lamp (220 V, 25 W); (b) curves of the a-Se nanopartilces film measured in a dark box and under illuminated
1 Li H T, Regensburger P J. Photoinduced discharge characteristics of amorphous selenium plates. Journal of Applied Physics , 1963, 34(6): 1730–1735
doi: 10.1063/1.1702669
2 Kasap S O, Rowlands J A. Review X-ray photoconductors and stabilized a-Se for direct conversion digital flat-panel X-ray image-detectors. Journal of Materials Science Materials in Electronics , 2000, 11(3): 179–198
doi: 10.1023/A:1008993813689
3 Greenwood N N, Eamshaw A. Chemistry of the Elements. 2nd ed. Oxford: Pergamon, 1997
4 Zhang H, Yang D R, Ji Y J, Ma X Y, Xu J, Que D L. Selenium nanotubes synthesized by a novel solution phase approach. Journal of Physical Chemistry B , 2004, 108(4): 1179–1182
doi: 10.1021/jp036168z
5 Gates B, Wu Y Y, Yin Y D, Yang P D, Xia Y N. Single-crystalline nanowires of Ag2Se can be synthesized by templating against nanowires of trigonal Se. Journal of the American Chemical Society , 2001, 123(46): 11500–11501
doi: 10.1021/ja0166895
6 Ge J P, Xu S, Zhuang J, Wang X, Peng Q, Li Y D. Synthesis of CdSe, ZnSe, and ZnxCd1-xSe nanocrystals and their silica sheathed core/shell structures. Inorganic Chemistry , 2006, 45(13): 4922–4927
doi: 10.1021/ic051598k
7 Li Y C, Zhong H Z, Li R, Zhou Y, Yang C H, Li Y F. High-yield fabrication and electrochemical characterization of tetrapodal CdSe, CdTe, and CdSexTe1-x nanocrystals. Advanced Functional Materials , 2006, 16(13): 1705–1716
doi: 10.1002/adfm.200500678
8 Jiang Z Y, Xie Z X, Xie S Y, Zhang X H, Huang R B, Zheng L S. High purity trigonal selenium nanorods growth via laser ablation under controlled temperature. Chemical Physics Letters , 2003, 368(3–4): 425–429
doi: 10.1016/S0009-2614(02)01918-8
9 Mayers B, Liu K, Sunderland D, Xia Y N. Sonochemical synthesis of trigonal selenium nanowires. Chemistry of Materials , 2003, 15(20): 3852–3858
doi: 10.1021/cm034193b
10 Cheng B, Samulski E T. Rapid, high yield, solution-mediated transformation of polycrystalline selenium powder into single-crystal nanowires. Chemical Communications , 2003, (16): 2024–2025
doi: 10.1039/b303755j
11 Gates B, Mayers B, Cattle B, Xia Y N. Synthesis and characterization of uniform nanowires of trigonal selenium. Advanced Functional Materials , 2002, 12(3): 219–227
doi: 10.1002/1616-3028(200203)12:3<219::AID-ADFM219>3.0.CO;2-U
12 Wang Z H, Chen X Y, Liu J W, Yang X G, Qian Y T. Polymer-assisted hydrothermal synthesis of trigonal selenium nanorod bundles. Inorganic Chemistry Communications , 2003, 6(10): 1329–1331
doi: 10.1016/j.inoche.2003.08.009
13 Cao X B, Xie Y, Zhang S Y, Li F Q. Ultra-thin trigonal selenium nanoribbons developed from series-wound beads. Advanced Materials , 2004, 16(7): 649–653
doi: 10.1002/adma.200306317
14 Zhang B, Ye X C, Dai W, Hou W Y, Zuo F, Xie Y. Biomolecule-assisted synthesis of single-crystalline selenium nanowires and nanoribbons via a novel flake-cracking mechanism. Nanotechnology , 2006, 17(2): 385–390
doi: 10.1088/0957-4484/17/2/007
15 Gates B, Mayers B, Grossman A, Xia Y N. A sonochemical approach to the synthesis of crystalline selenium nanowires in solutions and on solid supports. Advanced Materials , 2002, 14(23): 1749–1752
doi: 10.1002/1521-4095(20021203)14:23<1749::AID-ADMA1749>3.0.CO;2-Z
16 Zhang B, Dai W, Ye X C, Zuo F, Xie Y. Photothermally assisted solution-phase synthesis of microscale tubes, rods, shuttles, and an urchin-like assembly of single-crystalline trigonal selenium. Angewandte Chemie International Edition , 2006, 45(16): 2571–2574
doi: 10.1002/anie.200504131
17 Pejova B, Najdoski M, Grozdanov I, Dey S K. Chemical bath deposition of nanocrystalline (111) textured Ag2Se thin films. Materials Letters , 2000, 43(5–6): 269–273
doi: 10.1016/S0167-577X(99)00272-4
18 Lucovsky G, Mooradian A, Taylor W, Wright G B, Keezer R C. Identification of the fundamental vibrational modes of trigonal, α- monoclinic and amorphous selenium. Solid State Communications , 1967, 5(2): 113–117
doi: 10.1016/0038-1098(67)90006-3
19 Rajalakshmi M, Arora A K. Vibrational spectra of selenium nanoparticles dispersed in a polymer. Nanostructured Materials , 1999, 11(3): 399–405
doi: 10.1016/S0965-9773(99)00194-4
20 Li Q, Yam V W. High-yield synthesis of selenium nanowires in water at room temperature. Chemical Communications , 2006, (9): 1006–1008
doi: 10.1039/b515025f
21 Cheng L, Shao M W, Chen D Y, Wei X W, Wang F X, Hua J. High-yield fabrication of t-Se nanowires via hydrothermal method and their photoconductivity. Journal of Materials Science Materials in Electronics , 2008, 19(12): 1209–1213
doi: 10.1007/s10854-007-9535-7
22 Guo Z, Liu J Y, Jia Y, Chen X, Meng F L, Li M Q, Liu J H. Template synthesis, organic gas-sensing and optical properties of hollow and porous In2O3 nanospheres. Nanotechnology , 2008, 19(34): 345704
doi: 10.1088/0957-4484/19/34/345704
[1] Zidong ZHANG, Juehan YANG, Fuhong MEI, Guozhen SHEN. Longitudinal twinning α-In2Se3 nanowires for UV-visible-NIR photodetectors with high sensitivity[J]. Front. Optoelectron., 2018, 11(3): 245-255.
[2] Yanxiong E,Zhibiao HAO,Jiadong YU,Chao WU,Lai WANG,Bing XIONG,Jian WANG,Yanjun HAN,Changzheng SUN,Yi LUO. Size-dependent optical properties of InGaN quantum dots in GaN nanowires grown by MBE[J]. Front. Optoelectron., 2016, 9(2): 318-322.
[3] Heng LI,Wei JING,Dapeng YU,Qing ZHAO. Micro-scale hierarchical photoanode for quantum-dot-sensitized solar cells based on TiO2 nanowires[J]. Front. Optoelectron., 2016, 9(1): 53-59.
[4] Yueyin SHAO, Yongqian WEI, Zhenghua WANG. Surface-enhanced Raman scattering of sulfate ion based on Ag/Si nanostructure[J]. Front Optoelec Chin, 2011, 4(4): 378-381.
[5] Yueyin SHAO, Yongqian WEI, Zhenghua WANG. Synthesis of silicon nanowires supported Ag nanoparticles and their catalytic activity in photo-degradation of Rhodamine B[J]. Front Optoelec Chin, 2011, 4(2): 171-175.
[6] Ronghui QUE. High-yield synthesized silver orthophosphate nanowires and their application in photoswitch[J]. Front Optoelec Chin, 2011, 4(2): 176-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed