Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    2011, Vol. 4 Issue (1) : 121-127    https://doi.org/10.1007/s12200-011-0165-6
RESEARCH ARTICLE
Photochemical synthesis and photocatalysis application of ZnS/amorphous carbon nanotubes composites
Zhen FANG(), Yueting FAN, Yufeng LIU
Anhui Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
 Download: PDF(563 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, a photochemical synthesis of ZnS-amorphous carbon nanotubes (ACNTs/ZnS) composites using ACNTs was reported, whose surface were modified with carboxylic groups as a support. The size and distribution of ZnS nanoparticles can be controlled by adjusting the initial amount of reactants and the reaction time. The ACNTs/ZnS nanocomposites were characterized by X-ray power diffraction, scanning electron microscopy and transmission electron microscopy. Studies showed that ACNTs/ZnS nanocomposites had high photocatalytic activity toward the photodegradation of dye molecule.

Keywords nanocomposite      photochemical synthesis      photodegradation     
Corresponding Author(s): FANG Zhen,Email:fzfscn@mail.ahnu.edu.cn   
Issue Date: 05 March 2011
 Cite this article:   
Zhen FANG,Yueting FAN,Yufeng LIU. Photochemical synthesis and photocatalysis application of ZnS/amorphous carbon nanotubes composites[J]. Front Optoelec Chin, 2011, 4(1): 121-127.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-011-0165-6
https://academic.hep.com.cn/foe/EN/Y2011/V4/I1/121
sampleABCDEF
Zn (Ac)2·2H2O/mmol0.80.60.40.20.20.2
TAA/mmol0.80.60.40.20.20.2
reaction time1 h1 h1 h1 h30 min10 min
Tab.1  Summary of experimental parameters
Fig.1  Images of ACNTs. (a) SEM; (b) TEM; (c) HRTEM
Fig.1  Images of ACNTs. (a) SEM; (b) TEM; (c) HRTEM
Fig.2  Patterns of ACNTs. (a) XRD; (b) Raman; (c) IR
Fig.2  Patterns of ACNTs. (a) XRD; (b) Raman; (c) IR
Fig.3  Images of ACNTs/ZnS nanocomposites. (a) XRD; (b) SEM; (c) TEM; (d) HRTEM (insert is electron diffraction pattern)
Fig.3  Images of ACNTs/ZnS nanocomposites. (a) XRD; (b) SEM; (c) TEM; (d) HRTEM (insert is electron diffraction pattern)
Fig.4  SEM images of ACNTs/ZnS nanocomposites corresponding to samples A-C in Table 1. (a) A; (b) B; (c) C
Fig.4  SEM images of ACNTs/ZnS nanocomposites corresponding to samples A-C in Table 1. (a) A; (b) B; (c) C
Fig.5  TEM images of ACNTs/ZnS nanocomposites prepared with different reaction time. (a)10 min; (b) 30 min; (c) 1 h
Fig.5  TEM images of ACNTs/ZnS nanocomposites prepared with different reaction time. (a)10 min; (b) 30 min; (c) 1 h
Fig.6  Formation mechanism of ACNTs/ZnS nanocomposites
Fig.6  Formation mechanism of ACNTs/ZnS nanocomposites
Fig.7  Photoluminescence spectrum of ACNTs/ZnS nanocomposites
Fig.7  Photoluminescence spectrum of ACNTs/ZnS nanocomposites
Fig.8  Absorption spectra of different dyes degraded by ACNTs/ZnS nanocomposites. (a) MB; (b) eosin; (c) MR; (d) photodegradation rate of different dyes
Fig.8  Absorption spectra of different dyes degraded by ACNTs/ZnS nanocomposites. (a) MB; (b) eosin; (c) MR; (d) photodegradation rate of different dyes
1 Yin L W, Bando Y, Zhan J H, Li M S, Golberg D. Self-assembled highly faceted wurtzite-type ZnS single crystalline nanotubes with hexagonal cross-section. Advanced Materials (Deerfield Beach, Fla.) , 2005, 17(16): 1972-1977
doi: 10.1002/adma.200401839
2 Moore D F, Ding Y, Wang Z L. Crystal orientation-ordered ZnS nanowire bundles. Journal of the American Chemical Society , 2004, 126(44): 14372-14373
doi: 10.1021/ja0451057
3 Shen G Z, Bando Y, Golberg D. Self-assembled three-dimensional structures of single-crystalline ZnS submicrotubes formed by coalescence of ZnS nanowires. Applied Physics Letters , 2006, 88(12): 123107
doi: 10.1063/1.2186980
4 Hu J S, Ren L L, Guo Y G, Liang H P, Cao A M, Wan L J, Bai C L. Mass production and high photocatalytic activity of ZnS nanoporous nanoparticles. Angewandte Chemie International Edition , 2005, 44(8): 1269-1273
doi: 10.1002/anie.200462057
5 Fang X S, Ye C H, Zhang L D, Wang Y H, Wu Y C. Temperature-controlled catalytic growth of ZnS nanostructures by the evaporation of ZnS nanopowders. Advanced Functional Materials , 2005, 15(1): 63-68
doi: 10.1002/adfm.200305008
6 Zhang Z H, Yuan Y, Fang Y J, Liang L H, Ding H C, Jin L T. Preparation of photocatalytic nano-ZnO/TiO2 film and application for determination of chemical oxygen demand. Talanta , 2007, 73(3): 523-528
doi: 10.1016/j.talanta.2007.04.011
7 Yu J G, Zhang J, Liu S W. Ion-exchange synthesis and enhanced visible-light photoactivity of CuS/ZnS nanocomposite hollow spheres. Journal of Physical Chemistry C , 2010, 114(32): 13642-13649
8 Wu H Q, Wang Q Y, Yao Y Z, Qian C, Zhang X J, Wei X W. Microwave-assisted synthesis and photocatalytic properties of carbon nanotube/zinc sulfide heterostructures. Journal of Physical Chemistry C , 2008, 112(43): 16779-16783
doi: 10.1021/jp8069018
9 Kundu S, Wang K, Liang H. Photochemical generation of catalytically active shape selective rhodium nanocubes. Journal of Physical Chemistry C , 2009, 113(43): 18570-18577
doi: 10.1021/jp906745z
10 Zhao W B, Zhu J J, Xu J Z, Chen H Y. Photochemical synthesis of Bi2S3 nanoflowers on an alumina template. Inorganic Chemistry Communications , 2004, 7(5): 847-850
doi: 10.1016/j.inoche.2004.04.017
11 Jana S, Pande S, Sinha A K, Sarkar S, Pradhan M, Basu M, Saha S, Pal T. A green chemistry approach for the synthesis of flower-like Ag-doped MnO2 nanostructures probed by surface-enhanced raman spectroscopy. Journal of Physical Chemistry C , 2009, 113(4): 1386-1392
doi: 10.1021/jp809561p
12 Chen S F, Li J P, Qian K, Xu W P, Lu Y, Huang W X, Yu S H. Large scale photochemical synthesis of M@TiO2 nanocomposites (M= Ag, Pd, Au, Pt) and their optical properties, CO oxidation performance, and antibacterial effect. Nano Research , 2010, 3(4): 244-255
doi: 10.1007/s12274-010-1027-z
13 Shao M W, Wang D B, Yu G H, Hu B, Yu W C, Qian Y T. The synthesis of carbon nanotubes at low temperature via carbon suboxide disproportionation. Carbon , 2004, 42(1): 183-185
doi: 10.1016/j.carbon.2003.10.010
14 Fang Z, Tang K B, Lei S J, Li T W. CTAB-assisted hydrothermal synthesis of Ag/C nanostructures. Nanotechnology , 2006, 17(12): 3008-3011
doi: 10.1088/0957-4484/17/12/032
15 Kim B, Sigmund W M. Functionalized multiwall carbon nanotube/gold nanoparticle composites. Langmuir , 2004, 20(19): 8239-8242
doi: 10.1021/la049424n
16 Biswas S, Kar S, Chaudhuri S. Optical and magnetic properties of manganese-incorporated zinc sulfide nanorods synthesized by a solvothermal process. Journal of Physical Chemistry B , 2005, 109(37): 17526-17530
doi: 10.1021/jp053138i
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed