Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    2011, Vol. 4 Issue (2) : 199-203    https://doi.org/10.1007/s12200-011-0166-5
RESEARCH ARTICLE
Facile solvothermal synthesis and photoconductivity of one-dimensional organic Cd(II)-Schiff-base nanoribbons
Li LIU(), Ze ZHANG
College of Biochemical Engineering, Anhui Polytechnic University, Wuhu 241000, China
 Download: PDF(254 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

One-dimensional (1D) organic nanoribbons built on N-p-nitrophenylsalicylaldimine cadmium complex were synthesized via a facile solvothermal route. Scanning electron microscope images revealed that the as-synthesized products were ribbon like with widths of 500 nm, thicknesses of about 50 nm, and lengthes up to several hundred micrometers. Fourier transform infrared spectrum was employed to characterize the structure. The conductivity of a bundle of nanoribbons was also measured, which showed that Schiff base cadmium nanoribbons had good photoconductive property. This work might enrich organic photoconductive materials and be applicable in nano photoswitch devices in the future.

Keywords Schiff base cadmium complex      organic nanoribbons      photoconductivity     
Corresponding Author(s): LIU Li,Email:liulidsy@ahpu.edu.cn   
Issue Date: 05 June 2011
 Cite this article:   
Li LIU,Ze ZHANG. Facile solvothermal synthesis and photoconductivity of one-dimensional organic Cd(II)-Schiff-base nanoribbons[J]. Front Optoelec Chin, 2011, 4(2): 199-203.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-011-0166-5
https://academic.hep.com.cn/foe/EN/Y2011/V4/I2/199
Fig.1  XRD pattern of products
Fig.1  XRD pattern of products
Fig.2  FTIR spectrum of products
Fig.2  FTIR spectrum of products
Fig.3  SEM images of products. (a) Low magnification; (b) high magnification
Fig.3  SEM images of products. (a) Low magnification; (b) high magnification
Fig.4  Photoresponse of a bundle of nanoribbons. (a) curves of the products measured (I) in a dark box or (II) under illumination by using incandescence lamp (12 V, 10 W), and image of products between two Au electrodes from optical microscope (inset); (b) photoconductive characteristics of device under light switched on/off. (A voltage of 0.06 V was applied across the Au-Au electrodes, and the current was recorded during the light alternatively on and off at 10 s intervals)
Fig.4  Photoresponse of a bundle of nanoribbons. (a) curves of the products measured (I) in a dark box or (II) under illumination by using incandescence lamp (12 V, 10 W), and image of products between two Au electrodes from optical microscope (inset); (b) photoconductive characteristics of device under light switched on/off. (A voltage of 0.06 V was applied across the Au-Au electrodes, and the current was recorded during the light alternatively on and off at 10 s intervals)
1 Hu J T, Odom T W, Lieber C M. Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Accounts of Chemical Research , 1999, 32(5): 435–445
doi: 10.1021/ar9700365
2 Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides. Science , 2001, 291(5510): 1947–1949
doi: 10.1126/science.1058120
3 Shao M W, Shan Y Y, Wong N B, Lee S T. Silicon nanowire sensors for bioanalytical applications: glucose and hydrogen peroxide detection. Advanced Functional Materials , 2005, 15(9): 1478–1482
doi: 10.1002/adfm.200500080
4 Shen G Z, Chen D, Chen P C, Zhou C W. Vapor-solid growth of one-dimensional layer-structured gallium sulfide nanostructures. ACS Nano , 2009, 3(5): 1115–1120
doi: 10.1021/nn900133f
5 Liu H B, Li Y L, Xiao S Q, Gan H Y, Jiu T G, Li H M, Jiang L, Zhu D B, Yu D P, Xiang B, Chen Y F. Synthesis of organic one-dimensional nanomaterials by solid-phase reaction. Journal of the American Chemical Society , 2003, 125(36): 10794–10795
doi: 10.1021/ja036697g
6 Jordan B J, Ofir Y, Patra D, Caldwell S T, Kennedy A, Joubanian S, Rabani G, Cooke G, Rotello V M. Controlled self-assembly of organic nanowires and platelets using dipolar and hydrogen-bonding interactions. Small , 2008, 4(11): 2074–2078
doi: 10.1002/smll.200800811
7 Zang L, Che Y, Moore J S. One-dimensional self-assembly of planar π-conjugated molecules: adaptable building blocks for organic nanodevices. Accounts of Chemical Research , 2008, 41(12): 1596–1608
doi: 10.1021/ar800030w
8 Zhao Y S, Fu H B, Peng A D, Ma Y, Xiao D B, Yao J N. Low-dimensional nanomaterials based on small organic molecules: preparation and optoelectronic properties. Advanced Materials , 2008, 20(15): 2859–2876
doi: 10.1002/adma.200800604
9 Zhao Y S, Fu H B, Peng A D, Ma Y, Liao Q, Yao J N. Construction and optoelectronic properties of organic one-dimensional nanostructures. Accounts of Chemical Research , 2010, 43(3): 409–418
doi: 10.1021/ar900219n
10 Zhang X J, Zhang X H, Zou K, Lee C S, Lee S T. Single-crystal nanoribbons, nanotubes, and nanowires from intramolecular charge-transfer organic molecules. Journal of the American Chemical Society , 2007, 129(12): 3527–3532
doi: 10.1021/ja0642109
11 An B K, Lee D S, Lee J S, Park Y S, Song H S, Park S Y. Strongly fluorescent organogel system comprising fibrillar self-assembly of a trifluoromethyl-based cyanostilbene derivative. Journal of the American Chemical Society , 2004, 126(33): 10232–10233
doi: 10.1021/ja046215g
12 Zhao Y S, Xiao D B, Yang W S, Peng A D, Yao J N. 2,4,5-triphenylimidazole nanowires with fluorescence narrowing spectra prepared through the adsorbent-assisted physical vapor deposition method. Chemistry of Materials , 2006, 18(9): 2302–2306
doi: 10.1021/cm060102+
13 Zhang C Y, Zhang X J, Zhang X H, Ou X M, Zhang W F, Jie J S, Chang J C, Lee C S, Lee S T. Facile one-step fabrication of ordered organic nanowire films. Advanced Materials , 2009, 21(41): 4172–4175
doi: 10.1002/adma.200802793
14 Lee J K, Koh W K, Chae W S, Kim Y R. Novel synthesis of organic nanowires and their optical properties. Chemical Communications , 2002, (2): 138–139
doi: 10.1039/b109881k
15 Wang X H, Shao M W, Shao G, Wu Z C, Wang S W. A facile route to ultra-long polyaniline nanowires and the fabrication of photoswitch. Journal of Colloid and Interface Science , 2009, 332(1): 74–77
doi: 10.1016/j.jcis.2008.12.033
16 Tang C W, VanSlyke S A. Organic electroluminscent diodes. Applied Physics Letters , 1987, 51(12): 913–915
doi: 10.1063/1.98799
17 Xiao D B, Xiao H Y, Liu L L, Li X L. Preparation of phosphorescent crystalline tris(1-phenylisoquinoline) iridium nanobelts via a recrystallization method. New Journal of Chemistry , 2010, 34(6): 1100–1103
doi: 10.1039/c0nj00200c
18 Sano T, Nishio Y, Hamada Y, Takahashi H, Usuki T, Shibata K. Design of conjugated molecular materials for optoelectronics. Journal of Materials Chemistry , 2000, 10(1): 157–161
doi: 10.1039/a903239h
19 Yu T Z, Zhang K, Zhao Y L, Yang C H, Zhang H, Fan D W, Dong W K. A new trinuclear zinc(II) complex possessing five- and six-coordinated central ions and its photoluminescent property. Inorganic Chemistry Communications , 2007, 10(4): 401–403
doi: 10.1016/j.inoche.2006.12.010
20 Wang Y, Yang Z Y. Crystal structure of Ni(II) complex and fluorescence properties of Zn(II) complex with the Schiff base derived from diethenetriamine and PMBP. Journal of Luminescence , 2008, 128(3): 373–376
doi: 10.1016/j.jlumin.2007.09.002
21 Pietrangelo A, Sih B C, Boden B N, Wang Z W, Li Q F, Chou K C, MacLachlan M J, Wolf M O. Nonlinear optical properties of Schiff-base-containing conductive polymer films electro-deposited in microgravity. Advanced Materials , 2008, 20(12): 2280–2284
doi: 10.1002/adma.200702582
22 Liu L, Shao M W, Wang X H. One-dimensional organic photoconductive nanoribbons built on Zn–Schiff base complex. Journal of Solid State Chemistry , 2010, 183(3): 590–594
doi: 10.1016/j.jssc.2010.01.003
23 Singer A L, Atwood D A. Five-coordinate Salen(tBu) complexes of zinc. Inorganica Chimica Acta , 1998, 277(2): 157–162
doi: 10.1016/S0020-1693(97)06131-8
24 Hesse R. Indexing powder photographs of tetragonal, hexagonal and orthorhombic crystals. Acta Crystallographica , 1948, 1(4): 200–207
doi: 10.1107/S0365110X48000557
25 Lipson H. Indexing powder photographs of orthorhombic crystals. Acta Crystallographica , 1949, 2(1): 43–45
doi: 10.1107/S0365110X49000102
26 Nair M S, Joseyphus R S. Synthesis and characterization of Co(II), Ni(II), Cu(II) and Zn(II) complexes of tridentate Schiff base derived from vanillin and DL-a-aminobutyric acid. Spectrochimica Acta Part A , 2008, 70(4): 749–753
doi: 10.1016/j.saa.2007.09.006
27 Tuncel M, Serin S. Synthesis and characterization of new azo-linked Schiff bases and their cobalt (II), copper (II) and nickel (II) complexes. Transition Metal Chemistry , 2006, 31(6): 805–812
doi: 10.1007/s11243-006-0074-5
[1] Qi JIN,Jinsong LIU,Kejia WANG,Zhengang YANG,Shenglie WANG,Kefei YE. Oscillation effect in frequency domain current from a photoconductive antenna via double-probe-pulse terahertz detection technique[J]. Front. Optoelectron., 2015, 8(1): 104-109.
[2] Chunyan WU, Li WANG, Zihan ZHANG, Xiwei ZHANG, Qiang PENG, Jiajun CAI, Yongqiang YU, Huier GUO, Jiansheng JIE. Synthesis and optoelectronic properties of silver-doped n-type CdS nanoribbons[J]. Front Optoelec Chin, 2011, 4(2): 161-165.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed