|
|
|
Surface-enhanced Raman scattering of sulfate ion based on Ag/Si nanostructure |
Yueyin SHAO1( ), Yongqian WEI1, Zhenghua WANG2 |
| 1. Laboratory Material Supply Centre, Soochow University, Suzhou 215123, China; 2. Anhui Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China |
|
|
|
|
Abstract Silicon nanowires (SiNWs) with tens of micrometer in length have been synthesized and modified with Ag nanoparticles, which were confirmed by X-ray diffractometer (XRD), scanning electron microscopy and transmission electron microscopy. The Ag/Si nanostructure was employed to detect inorganic ions SO42- via surface-enhanced Raman scattering (SERS) with strong signals at low concentrations of 1×10-9 mol/L. This ultrasensitive method might be applied in other fields.
|
| Keywords
surface-enhanced Raman scattering (SERS)
silicon nanowires (SiNWs)
Ag nanoparticles
sulfate ions
|
|
Corresponding Author(s):
SHAO Yueyin,Email:yyshao@suda.edu.cn
|
|
Issue Date: 05 December 2011
|
|
| 1 |
Collins P G, Zettl A, Bando H, Thess A, Smalley R E. Nanotube nanodevice. Science , 1997, 278(5335): 100–103 doi: 10.1126/science.278.5335.100
|
| 2 |
Cui Y, Lieber C M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science , 2001, 291(5505): 851–853 doi: 10.1126/science.291.5505.851 pmid:11157160
|
| 3 |
Law M, Sirbuly D J, Johnson J C, Goldberger J, Saykally R J, Yang P D. Nanoribbon waveguides for subwavelength photonics integration. Science , 2004, 305(5688): 1269–1273 doi: 10.1126/science.1100999 pmid:15333835
|
| 4 |
Korgel B A. Materials science. Self-assembled nanocoils. Science , 2004, 303(5662): 1308–1309 doi: 10.1126/science.1095178 pmid:14988542
|
| 5 |
Hu M S, Chen H L, Shen C H, Hong L S, Huang B R, Chen K H, Chen L C. Photosensitive gold-nanoparticle-embedded dielectric nanowires. Nature Materials , 2006, 5(2): 102–106 doi: 10.1038/nmat1564 pmid:16429142
|
| 6 |
Eisenstein M. Protein detection goes down to the wire. Nature Methods , 2005, 2(11): 804–805 doi: 10.1038/nmeth1105-804b pmid:16285036
|
| 7 |
Alivisatos P. The use of nanocrystals in biological detection. Nature Biotechnology , 2004, 22(1): 47–52 doi: 10.1038/nbt927 pmid:14704706
|
| 8 |
Ma D D D, Lee C S, Au F C K, Tong S Y, Lee S T. Small-diameter silicon nanowire surfaces. Science , 2003, 299(5614): 1874–1877 doi: 10.1126/science.1080313 pmid:12595610
|
| 9 |
Shao M W, Cheng L, Zhang X H, Ma D D D, Lee S T. Excellent photocatalysis of HF-treated silicon nanowires. Journal of the American Chemical Society , 2009, 131(49): 17738–17739
|
| 10 |
Cui Y, Duan X F, Hu J T, Lieber C M. Doping and electrical transport in silicon nanowires. Journal of Physical Chemistry B , 2000, 104(22): 5213–5216 doi: 10.1021/jp0009305
|
| 11 |
Chung S W, Yu J Y, Heath J R. Silicon nanowire devices.Applied Physics Letters , 2000, 76(15): 2068–2070 doi: 10.1063/1.126257
|
| 12 |
Li Z, Chen Y, Li X, Kamins T I, Nauka K, Williams R S. Sequence-specific label-free DNA sensors based on silicon nanowires.Nano Letters , 2004, 4(2): 245–247 doi: 10.1021/nl034958e
|
| 13 |
Zhou X T, Hu J Q, Li C P, Ma D D D, Lee C S, Lee S T. Silicon nanowires as chemical sensors. Chemical Physics Letters , 2003, 369(1–2): 220–224 doi: 10.1016/S0009-2614(02)02008-0
|
| 14 |
Shao M W, Shan Y Y, Wong N B, Lee S T. Silicon nanowire sensors for bioanalytical applications: Glucose and hydrogen peroxide detection. Advanced Functional Materials , 2005, 15(9): 1478– 1482 doi: 10.1002/adfm.200500080
|
| 15 |
Shao M W, Yao H, Zhang M L, Wong N B, Shan Y Y, Lee S T. Fabrication and application of long strands of silicon nanowires as sensors for bovine serum albumin detection. Applied Physics Letters , 2005, 87(18): 183106 doi: 10.1063/1.2123393
|
| 16 |
Lyon L A, Keating C D, Fox A P, Baker B E, He L, Nicewarner S R, Mulvaney S P, Natan M J. Raman spectroscopy. Analytical Chemistry , 1998, 70(12): 341–362 doi: 10.1021/a1980021p pmid:9640107
|
| 17 |
Mulvaney S P, Keating C D. Raman spectroscopy. Analytical Chemistry , 2000, 72(12): 145–158 doi: 10.1021/a10000155 pmid:10882205
|
| 18 |
Campion A, Kambhampati P. Surface-enhanced Raman scattering. Chemical Society Reviews , 1998, 27(4): 241–250 doi: 10.1039/a827241z
|
| 19 |
Kneipp K, Kneipp H, Itzkan I, Dasari R R, Feld M S. Ultrasensitive chemical analysis by Raman spectroscopy. Chemical Reviews , 1999, 99(10): 2957–2976 doi: 10.1021/cr980133r pmid:11749507
|
| 20 |
Szulbinski W S, Czernuszewicz R S. The effect of ligand structure on surface enhanced Raman scattering by Fe(II) macrocyclic complexes: [FeIITPC]2+ and [FeIIDPC]2+. Inorganica Chimica Acta , 1996, 247(1): 11–18 doi: 10.1016/0020-1693(95)04946-0
|
| 21 |
Shao M W, Zhang M L, Wong N B, Ma D D D, Wang H, Chen W W, Lee S T. Ag-modified silicon nanowires substrate for ultrasensitive surface-enhanced raman spectroscopy. Applied Physics Letters , 2008, 93(23): 233118 doi: 10.1063/1.2969292
|
| 22 |
Shao M W, Lu L, Wang H, Wang S, Zhang M L, Ma D D D, Lee S T. An ultrasensitive method: surface-enhanced Raman scattering of Ag nanoparticles from beta-silver vanadate and copper. Chemical Communicatons , 2008, (20): 2310–2312
|
| 23 |
D’Urzo L, Bozzini B. SERS study of the galvanostatic sequence used for the electrochemical deposition of copper from baths employed in the fabrication of interconnects. Journal of Materials Science Materials in Electronics , 2009, 20(3): 217–222 doi: 10.1007/s10854-008-9705-2
|
| 24 |
Bozzini B, D’Urzo L, Mele C, Romanello V. Electrodeposition of Cu from acidic sulphate solutions in the presence of polyethylene glycol and chloride ions. Journal of Materials Science Materials in Electronics , 2006, 17(11): 915–923 doi: 10.1007/s10854-006-0044-x
|
| 25 |
Mosier-Boss P A, Lieberman S H. Detection of nitrate and sulfate anions by normal Raman spectroscopy and SERS of cationic-coated, silver substrates. Applied Spectroscopy , 2000, 54(8): 1126–1135 doi: 10.1366/0003702001950922
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|