Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    2011, Vol. 4 Issue (4) : 430-433    https://doi.org/10.1007/s12200-011-0173-6
RESEARCH ARTICLE
Axial strain sensitivity analysis of long period fiber grating by new transfer matrix method
Guodong WANG(), Yunjian WANG, Na LI
School of Electrical Engineering and Automation, Henan Polytechnic University, Jiaozuo 454003, China
 Download: PDF(111 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The axial strain sensitivity of long period fiber grating (LPFG) is analyzed by new transfer matrix method. The new transfer matrix method can be used to analyze the modes coupling between the core mode and multiple cladding modes. Compared with the previous method used, such as solving the coupled mode equation by the fourth order adaptive step size Runge-Kutta algorithm, the new transfer matrix method (TMM) has a faster calculation speed. Theoretical results are excellent agreement with the method of solving the coupled mode equation (SCME).

Keywords axial strain sensitivity      long period fiber grating (LPFG)      new transfer matrix method (TMM)     
Corresponding Author(s): WANG Guodong,Email:wgd@hpu.edu.cn   
Issue Date: 05 December 2011
 Cite this article:   
Guodong WANG,Yunjian WANG,Na LI. Axial strain sensitivity analysis of long period fiber grating by new transfer matrix method[J]. Front Optoelec Chin, 2011, 4(4): 430-433.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-011-0173-6
https://academic.hep.com.cn/foe/EN/Y2011/V4/I4/430
Fig.1  Theoretically calculated transmission spectrum by new TMM (solid line) and SCME (dotted line) through a Blackman apodization grating
Fig.2  Computing times for new TMM (?) and SCME (?)
Fig.3  Theoretically calculated transmission spectrum by new TMM through a non-uniform period grating
Fig.4  Transmission spectral of LPFG when different tension is applied to it
Fig.5  Resonance wavelength of LPFG when different tension is applied to it
1 Andermahr N, Fallnich C. Optically induced long-period fiber gratings for guided mode conversion in few-mode fibers. Optics Express , 2010, 18(5): 4411-4416
doi: 10.1364/OE.18.004411 pmid:20389453
2 Chen K, Sheng Q Q, Dong X Y. Band-rejection and band pass filters based on mechanically induced long-period fibergratings. Microwave and Optical Technology Letters , 2004, 42(1): 15-17
doi: 10.1002/mop.20193
3 Ni N, Chan C C, Tan K M, Tjin S C, Dong X Y. Broad-band EDFA gain flattening by using an embedded long-period fiber grating filter. Optics Communications , 2007, 271(2): 377-381
doi: 10.1016/j.optcom.2006.10.033
4 Kang J, Dong X Y, Zhao C L, Qian W W, Li M C. Simultaneous measurement of strain and temperature with a long period fiber grating inscribed Sagnac interferometer. Optics Communications , 2011, 284(8): 2145-2148
doi: 10.1016/j.optcom.2011.01.002
5 Venugopalan T, Sun T, Grattan K T V. Temperature characterization of long period gratings written in three different types of optical fiber for potential high temperature measurements. Sensors and Actuators A, Physical , 2010, 160(1-2): 29-34
doi: 10.1016/j.sna.2010.03.016
6 Martinez-Rios A, Monzon-Hernandez D, Torres-Gomez I. Highly sensitive cladding-etched arc-induced long period fiber gratings for refractive index sensing. Optics Communications , 2010, 283(6): 958-962
doi: 10.1016/j.optcom.2009.10.108
7 Harhira A, Guay F, Daigle M, Lapointe J, Kashyap R. Long-period fiber gratings fabricated with a CO2 laser beam and phase mask. Optics Communications , 2010, 283(23): 4633-4638
doi: 10.1016/j.optcom.2010.06.071
8 Eggen C L, Lin Y S, Wei T, Xiao H. Detection of lipid bilayer membranes formed on silica by double-long period fiber grating laser refractometry. Sensors and Actuators B, Chemical , 2010, 150(2): 734-741
doi: 10.1016/j.snb.2010.08.010
9 Nam S H, Lee J, Yin S Z. Control of resonant peak depths of tunable long-period fiber gratings using over coupling. Optics Communications , 2011, 284(4): 961-964
doi: 10.1016/j.optcom.2010.10.027
10 Jiang M S, Feng D J, Sui Q M. Characteristic research on mechanically induced long-period fiber gratings. Chinese Optics Letters , 2009, 7(2): 112-114
doi: 10.3788/COL20090702.0112
11 Wang G D, Xie B B. Improving the performance of chirped fiber grating with cladding being etched sinusoidal function. Optik(Stuttgart) , 2011, 122(6): 557-559
doi: 10.1016/j.ijleo.2010.04.016
12 Dong X W, Feng S C, Xu O, Lu S H, Pei L. Add/drop channel filter based on two parallel long-period fiber gratings coupler. Optik (Stuttgart) , 2009, 120(16): 855-859
doi: 10.1016/j.ijleo.2008.02.026
13 Shao L Y, Laronche A, Smietana M, Mikulic P, Bock W J, Albert J. Highly sensitive bend sensor with hybrid long period and tilted fiber Bragg grating. Optics Communications , 2010, 283(13): 2690-2694
doi: 10.1016/j.optcom.2010.03.013
14 Erdogan T. Cladding-mode resonances in short- and long-period fiber grating filters. Journal of the Optical Society of America A, 1997, 14(8): 1760-1773
doi: 10.1364/JOSAA.14.001760
15 Erdogan T. Fiber grating spectra. Journal of Lightwave Technology , 1997, 15(8): 1277-1294
doi: 10.1109/50.618322
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed