Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    2011, Vol. 4 Issue (4) : 364-368    https://doi.org/10.1007/s12200-011-0180-7
RESEARCH ARTICLE
Influence of V/III ratio on QD size distribution
Zhongwei SHI, Lirong HUANG(), Yi YU, Peng TIAN, Hanchao WANG
Wuhan National Laboratory for Optoelectronics, College of Optoelectonic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(244 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The influence of V/III ratio on the formation of quantum dots (QDs) grown by metal-organic chemical vapor deposition (MOCVD) is investigated by atomic force microscopy (AFM) and photoluminescence (PL) measurements. As V/III ratio increases, the density of QDs decreases accompanied by the transition of QD size distribution from bimodal (at V/III= 9) to single-modal (at V/III= 15), and then to bimodal (at V/III= 25) again, which is attributed to the change of the indium-species migration length at different V/III ratios. There are PL spectrum redshifts and the PL peak intensity decreases as V/III ratio increases.

Keywords quantum dots (QDs)      V/III ratio      QD size distribution      photoluminescence (PL)     
Corresponding Author(s): HUANG Lirong,Email:hlr5694@163.com   
Issue Date: 05 December 2011
 Cite this article:   
Zhongwei SHI,Lirong HUANG,Yi YU, et al. Influence of V/III ratio on QD size distribution[J]. Front Optoelec Chin, 2011, 4(4): 364-368.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-011-0180-7
https://academic.hep.com.cn/foe/EN/Y2011/V4/I4/364
Fig.1  Diameter distributions of samples A, B, and C
sampletemperature/°CV/III ratiosmall modal/%large modal/%density/μm-2
A505961.829.11.31×102
B5051575.219.71.17×102
C5052557.030.31.12×102
Tab.1  Growth parameters and experimental results for samples A, B and C
Fig.2  Size distribution histograms of samples D, E and F
sampletemperature/°CV/III ratiosmall modal/%large modal/%density/μm-2
D4971566.223.81.30×102
E4972061.033.11.21×102
F4972560.231.61.15×102
Tab.2  Growth parameters and experimental results for samples D, E and F
Fig.3  PL spectra of samples D, E and F
Fig.4  Gaussian fitting PL of sample F
1 Kong L, Feng Z C, Wu Z Y, Lu W J. Temperature dependent and time-resolved photoluminescence studies of InAs self-assembled quantum dots with InGaAs strain reducing layer structure. Journal of Applied Physics , 2009, 106(1): 013512
doi: 10.1063/1.3159648
2 Zhou D, Sharma G, Thomassen S F, Reenaas T W, Fimland B O. Optimization towards high density quantum dots for intermediate band solar cells grown by molecular beam epitaxy. Applied Physics Letters , 2010, 96(6): 061913
doi: 10.1063/1.3313938
3 Fei S P, Shi Z W, Huang L R. InAs/GaAs quantum dots grown on different GaAs substrates with graded InxGa1-xAs strain-reducing layer. Frontiers of Optoelectronics in China , 2010, 3(3): 241–244
doi: 10.1007/s12200-010-0109-6
4 Jung S I, Yeo H Y, Yun I, Leem J Y, Han I K, Kim J S, Lee J I. Size distribution effects on self-assembled InAs quantum dots. Journal of Materials Science Materials in Electronics , 2007, 18(S1): 191–194
doi: 10.1007/s10854-007-9205-9
5 Jung S I, Yeo H Y, Yun I, Leem J Y, Han I K, Kim J S, Lee J I. Photoluminescence study on the growth of self-assembled InAs quantum dots: Formation characteristics of bimodal-sized quantum dots. Physica E, Low-Dimensional Systems and Nanostructures , 2006, 33(1): 280–283
doi: 10.1016/j.physe.2006.03.150
6 Arciprete F, Fanfoni M, Patella F, Della Pia A, Balzarotti A. Temperature dependence of the size distribution function of InAs quantum dots on GaAs(001). Physical Review B: Condensed Matter and Materials Physics , 2010, 81(16): 165306
doi: 10.1103/PhysRevB.81.165306
7 Kim G S, Jeon S M, Cho M Y, Choi H Y, Kim D Y, Kim M S, Kwon Y S, Choe J W, Kim J S, Leem J Y. Influence of InAs coverage on transition of size distribution and optical properties of InAs quantum dots. Acta Physica Polonica A , 2010, 118(4): 673–676
8 Hoglund L, Petrini E, Asplund C, Malm H, Andersson J Y, Holtz P O. Optimising uniformity of InAs/(InGaAs)/GaAs quantum dots grown by metal organic vapor phase epitaxy. Applied Surface Science , 2006, 15(252): 5525–5529
9 Li L, Liu G J, Li Z G, Li M, Wang X H. Growth and characterization of InAs quantum dots with low-denstity and long emission wavelength. Chinese Optics Letters , 2008, 6(1): 71–73
doi: 10.3788/COL20080601.0071
10 Anantathanasarn S, Notzel R, van Veldhoven P J, van Otten F W M, Eijkemans T J, Trampert A, Satpati B, Wolter J H. Wavelength-tunable (1.55-μm region) InAs quantum dots in InGaAsP/InP(100) grown by metal-organic vapor-phase epitaxy. Journal of Applied Physics , 2005, 98(1): 013503–013509
[1] Yanxiong E,Zhibiao HAO,Jiadong YU,Chao WU,Lai WANG,Bing XIONG,Jian WANG,Yanjun HAN,Changzheng SUN,Yi LUO. Size-dependent optical properties of InGaN quantum dots in GaN nanowires grown by MBE[J]. Front. Optoelectron., 2016, 9(2): 318-322.
[2] E. KASPER, M. OEHME, J. WERNER, T. AGUIROV, M. KITTLER. Direct band gap luminescence from Ge on Si pin diodes[J]. Front Optoelec, 2012, 5(3): 256-260.
[3] Yijie HUO, Hai LIN, Robert CHEN, Yiwen RONG, Theodore I. KAMINS, James S. HARRIS. MBE growth of tensile-strained Ge quantum wells and quantum dots[J]. Front Optoelec, 2012, 5(1): 112-116.
[4] Caixia SONG, Yuwei SUN, Yaohua XU, Debao WANG. Synthesis and optical property of ZnO nano-/micro-rods[J]. Front Optoelec Chin, 2011, 4(2): 156-160.
[5] Pijus Kanti SAMANTA, Partha Roy CHAUDHURI. Substrate effect on morphology and photoluminescence from ZnO monopods and bipods[J]. Front Optoelec Chin, 2011, 4(2): 130-136.
[6] Jieying KONG, Bin LIU, Rong ZHANG, Zili XIE, Yong ZHANG, Xiangqian XIU, Youdou ZHENG. Optical properties of InN films grown by MOCVD[J]. Front Optoelec Chin, 2008, 1(3-4): 341-344.
[7] JIA Guozhi, YAO Jianghong, SHU Yongchun, WANG Zhanguo. Optical properties and structure of InAs quantum dots in near-infrared band[J]. Front. Optoelectron., 2008, 1(1-2): 134-137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed