Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    2011, Vol. 4 Issue (4) : 369-377    https://doi.org/10.1007/s12200-011-0181-6
RESEARCH ARTICLE
Application of Poly (3, 4-ethylenedioxythiophene): polystyrenesulfonate counter electrode in polymer heterojunction dye-sensitized solar cells
Gentian YUE, Jihuai WU(), Jianming LIN, Miaoliang HUANG, Ying YAO, Leqing FAN, Yaoming XIAO
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, The Key Laboratory for Functional Materials of Fujian Higher Education, Institute of Material Physical Chemistry, Huaqiao University, Quanzhou 362021, China
 Download: PDF(493 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A Poly (3, 4-ethylenedioxythiophene): polystyrenesulfonate (PEDOT:PSS)/carbon conductive paste was prepared and coated on a conducting FTO glass to construct counter electrode for polymer heterojunction dye-sensitized solar cells (DSSCs). The surface morphology, conductivity, sheet resistance, redox properties and photoelectric properties of carbon electrode were observed respectively by scanning electron microscopy, four-probe tester and CHI660D electrochemical measurement system. The experimental results showed that DSSCs had the best photoelectric properties for PEDOT:PSS/carbon counter electrode annealing at 80°C in vacuum conditions. Using [6, 6]-phenyl-C61-butyric acid methyl ester (PCBM)/poly (3-hexylthiophene) (P3HT) heterojunction to replace I3-/I- redox electrolyte, the overall energy conversion efficiency of the DSSCs with barrier layer reached 4.11% under irradiation of a simulated solar light with a intensity of 100 mW·cm-1 (AM 1.5), which is higher 20% than that of the DSSCs with Pt counter electrode (3.42%). The excellent photoelectric properties, simple preparation procedure and low cost allow the PEDOT:PSS/carbon electrode to be a credible alternative used in DSSCs.

Keywords Poly (3, 4-ethylenedioxythiophene): polystyrenesulfonate (PEDOT:PSS), counter electrode      polymer heterojunction, dye-sensitized solar cell (DSSC), photoelectric properties     
Corresponding Author(s): WU Jihuai,Email:jhwu@hqu.edu.cn (J. Wu)   
Issue Date: 05 December 2011
 Cite this article:   
Gentian YUE,Jihuai WU,Jianming LIN, et al. Application of Poly (3, 4-ethylenedioxythiophene): polystyrenesulfonate counter electrode in polymer heterojunction dye-sensitized solar cells[J]. Front Optoelec Chin, 2011, 4(4): 369-377.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-011-0181-6
https://academic.hep.com.cn/foe/EN/Y2011/V4/I4/369
Fig.1  A schematic diagram of the PEDOT:PSS/carbon conductive solution and TiO/dye/PCBM/P3HT/PEDOT:PSS/ carbon solar cell
Fig.2  SEM image of electrode (a) PEDOT:PSS coated on FTO glass, (b) and (c) PEDOT: PSS/carbon electrode
Fig.3  Cyclic voltammograms for PEDOT:PSS/carbon electrode and Pt electrode at a scan rate of 50 mV·s in 10 mM LiI, 1 mM I acetonitrile solution containing 0.1 M LiClO as the supporting electrolyte
Fig.4  (a) Consecutive four cyclic voltammograms of I/I system for PEDOT:PSS/carbon electrode in the acetonitrile solution containing 0.1 M LiClO as the supporting electrolyte and 10 mM LiI, 1 mM I as the redox couple, and Pt foil as working electrode and = 50mV·s; (b) relationship between the cycle times and the redox peak currents for PEDOT:PSS/carbon electrode.
temperature/°C406080100120140
resistivity/(Ω·cm)0.6850.6560.6090.6400.6620.721
conductivity/(S·cm-1)1.4641.5281.7201.5661.5251.434
sheet resistance /(Ω·sq-1)14.2713.5611.9413.3713.7814.17
Tab.1  In?uence of the temperature on the conductivity, resistivity and sheet resistance of PEDOT:PSS/carbon electrode in atmosphere environment annealed
Fig.5  In?uence of the temperature and annealed environment on the conductivity, resistivity and sheet resistance of PEDOT:PSS/carbon electrode
temperature/°C406080100120140
resistivity/(Ω·cm)0.6650.6260.5890.6120.6430.668
conductivity/(S·cm-1)1.5641.5881.7281.5861.5661.523
sheet resistance/(Ω·sq-1)13.6712.8611.0212.3713.0813.86
Tab.2  In?uence of temperature on the conductivity, resistivity and sheet resistance of PEDOT:PSS/carbon electrode in environment annealed
Fig.6  IPCEs of DSSCs with PEDOT:PSS/carbon and Pt counter electrodes
Voc/VJsc/(mA·cm-2)FFη /%
Pt electrode0.816.70.633.42
PEDOT:PSS/carbon electrode0.837.50.664.11
Tab.3  Photoelectric properties of DSSCs with PEDOT:PSS/carbon and Pt counter electrodes
Fig.7  Photocurrent-voltage characteristics of DSSCs (they both had barrier layer) with PEDOT:PSS/carbon (solid line) and Pt (dash line) counter electrodes under 100 mA·cm light irradiation
1 O’Regan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature , 1991, 353(6346): 737–740
doi: 10.1038/353737a0
2 Yu G, Gao J, Hummelen J C, Wudl F, Heeger A J. Polymer photovoltaic cells: enhanced ef?ciencies via a network of internal donor-acceptor heterojunctions. Science , 1995, 270(5243): 1789–1791
doi: 10.1126/science.270.5243.1789
3 Wu J H, Yue G T, Xiao Y M, Ye H F, Lin J M, Huang M L. Application of a polymer heterojunction in dye-sensitized solar cells. Electrochimica Acta , 2010, 55(20): 5798–5802
doi: 10.1016/j.electacta.2010.05.025
4 Gr?tzel M. Solar energy conversion by dye-sensitized photovoltaic cells. Inorganic Chemistry , 2005, 44(20): 6841–6851
doi: 10.1021/ic0508371 pmid:16180840
5 Wu J, Lan Z, Hao S, Li P, Lin J, Huang M, Fang L, Huang Y. Progress on the electrolytes for dye-sensitized solar cells. Pure and Applied Chemistry , 2008, 80(11): 2241–2258
doi: 10.1351/pac200880112241
6 Wu J, Hao S, Lan Z, Lin J, Huang M, Huang Y, Li P, Yin S, Sato T. An all-solid-state dye-sensitized solar cell-based poly(N-alkyl-4-vinyl-pyridine iodide) electrolyte with efficiency of 5.64%. Journal of the American Chemical Society , 2008, 130(35): 11568–11569
doi: 10.1021/ja802158q pmid:18693733
7 Bach U, Lupo D, Comte P, Moser J E, Weissortel F, Salbeck J, Gr?tzel M. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature , 1998, 395(6702): 583–585
doi: 10.1038/26936
8 Gr?tzel M. Photoelectrochemical cells. Nature , 2001, 414(6861): 338–344
doi: 10.1038/35104607 pmid:11713540
9 Wu J, Lan Z, Lin J M, Huang M L, Hao S C, Sato T, Yin S. A novel thermosetting gel electrolyte for stable quasi-solid-state dye-sensitized solar cells. Advanced Materials (Deerfield Beach, Fla.) , 2007, 19(22): 4006–4011
doi: 10.1002/adma.200602886
10 Peter L M. Dye-sensitized nanocrystalline solar cells. Physical Chemistry Chemical Physics , 2007, 9(21): 2630–2642
doi: 10.1039/b617073k pmid:17627308
11 Papageorgiou N. Counter-electrode function in nanocrystalline photoelectrochemical cell configurations. Coordination Chemistry Reviews , 2004, 248(13–14): 1421–1446
doi: 10.1016/j.ccr.2004.03.028
12 Jeon S S, Kim C, Ko J, Im S S. Spherical polypyrrole nanoparticles as a highly efficient counter electrode for dye-sensitized solar cells. Journal of Materials Chemistry , 2011, 21(22): 8146–8151
doi: 10.1039/c1jm10112a
13 Halme J, Toivola M, Tolvanen A, Lund P. Charge transfer resistance of spray deposited and compressed counter electrodes for dye-sensitized nanoparticle solar cells on plastic substrates. Solar Energy Materials and Solar Cells , 2006, 90(7–8): 872–886
doi: 10.1016/j.solmat.2005.05.007
14 Zhu H W, Zeng H F, Subramanian V, Masarapu C, Hung K H, Wei B. Anthocyanin-sensitized solar cells using carbon nanotube films as counter electrodes. Nanotechnology , 2008, 19(46): 465204
doi: 10.1088/0957-4484/19/46/465204 pmid:21836238
15 Lee W J, Ramasamy E, Lee D Y, Song J S. Efficient dye-sensitized solar cells with catalytic multiwall carbon nanotube counter electrodes. ACS Applied Materials & Interfaces , 2009, 1(6): 1145–1149
doi: 10.1021/am800249k pmid:20355903
16 Ramasamy E, Lee W J, Lee D Y, Song J S. Spray coated multi-wall carbon nano-tube counter electrode for tri-iodide (I3-) reduction in dye-sensitized solar cells. Electrochemistry Communications , 2008, 10(7): 1087–1089
doi: 10.1016/j.elecom.2008.05.013
17 Kay A, Gr?tzel M. Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Solar Energy Materials and Solar Cells , 1996, 44(1): 99–117
doi: 10.1016/0927-0248(96)00063-3
18 Li G R, Wang F, Jiang Q W, Gao X P, Shen P W. Carbon nanotubes with titanium nitride as a low-cost counter-electrode material for dye-sensitized solar cells. Angewandte Chemie International Edition , 2010, 49(21): 3653–3656
pmid:20391550
19 Naja? E, Kim J Y, Han S H, Shin K. UV-ozone treatment of multi-walled carbon nanotubes for enhanced organic solvent dispersion. Colloid Surf. A , 2006, 284-285: 373–378
doi: 10.1016/j.colsurfa.2005.11.074
20 Kim K K, Yoon S M, Choi J Y, Lee J, Kim B K, Kim J M, Lee J H, Paik U, Park M H, Yang C W, An K H, Chung Y, Lee Y H. Design of dispersants for the dispersion of carbon nanotubes in an organic solvent. Advanced Functional Materials , 2007, 17(11): 1775– 1783
doi: 10.1002/adfm.200600915
21 Wu T M, Lin Y W, Liao C S. Preparation and characterization of polyaniline/multi-walled carbon nanotube composites. Carbon , 2005, 43(4): 734–740
doi: 10.1016/j.carbon.2004.10.043
22 Yun D J, Hong K, Kim S, Yun W M, Jang J Y, Kwon W S, Park C E, Rhee S W. Multiwall carbon nanotube and poly(3,4- ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) composite films for transistor and inverter devices. ACS Applied Materials & Interfaces , 2011, 3(1): 43–49
doi: 10.1021/am1008375 pmid:21204559
23 Jonsson S K M, Birgerson J, Crispin X, Greczynski G, Osikowicz W, Gon A W D, Salaneck W R, Fahlman M. The effects of solvents on the morphology and sheet resistance in poly (3, 4-ethylenedioxythiophene)-polystyrenesulfonic acid (PEDOT-PSS) films. Synthetic Metals , 2003, 139(1): 1–10
doi: 10.1016/S0379-6779(02)01259-6
24 Groenendaal L, Jonas F, Feitag D, Pielartzik H, Reynolds J R. Poly (3, 4-ethylenedioxythiophene) and its derivatives: past, present, and future. Advanced Materials (Deerfield Beach, Fla.) , 2000, (12): 482
25 Hwang J, Amy F, Kahn A. Spectroscopic study on sputtered PEDOT· PSS: role of surface PSS layer. Organic Electronics , 2006, 7(5): 387–396
doi: 10.1016/j.orgel.2006.04.005
26 Zhou E, Tan Z, Huo L, He Y, Yang C, Li Y. Effect of branched conjugation structure on the optical, electrochemical, hole mobility, and photovoltaic properties of polythiophenes. Journal of Physical Chemistry B , 2006, 110(51): 26062–26067
doi: 10.1021/jp065442x pmid:17181258
28 Renouard T, Fallahpour R A, Nazeeruddin M K, Humphry-Baker R, Gorelsky S I, Lever A B, Gr?tzel M. Novel ruthenium sensitizers containing functionalized hybrid tetradentate ligands: synthesis, characterization, and INDO/S analysis. Inorganic Chemistry , 2002, 41(2): 367–378
doi: 10.1021/ic010512u pmid:11800627
29 Popov A I, Geske D H. Voltammetric evaluation of the stability of trichloride, tribromide, and triiodide ions in nitromethane, acetone, and acetonitrile. Journal of the American Chemical Society , 1958, 80(6): 1340–1352
doi: 10.1021/ja01539a018
30 Imoto K, Takahashi K, Yamaguchi T, Komura T, Nakamura J, Murata K. High-performance carbon counter electrode for dye-sensitized solar cells. Solar Energy Materials and Solar Cells , 2003, 79(4): 459–469
doi: 10.1016/S0927-0248(03)00021-7
31 Guo H, Li Y, Fan L, Wu X, Guo M. Voltammetric behavior study of folic acid at phosphomolybdic-polypyrrole film modified electrode. Electrochimica Acta , 2006, 51(28): 6230–6237
doi: 10.1016/j.electacta.2006.04.013
32 Huang J, Miller P F, de Mello J C, de Mello A J, Bradley D D C. Influence of thermal treatment on the conductivity and morphology of PEDOT/PSS films. Synthetic Metals , 2003, 139(3): 569–572
doi: 10.1016/S0379-6779(03)00280-7
33 Aasmundtveit K E, Samuelsen E J, Pettersson L A A, Ingan?s O, Johansson T, Feidenhans’l R. Structure of thin films of poly (3, 4-ethylenedioxythiophene). Synthetic Metals , 1999, 101(1–3): 561–564
doi: 10.1016/S0379-6779(98)00315-4
34 Al-Ibrahim M, Ambacher O, Sensfuss S, Gobsch G. Effects of solvent and annealing on the improved performance of solar cells based on poly (3-hexylthiophene): fullerene. Applied Physics Letters , 2005, 86(20): 201120
doi: 10.1063/1.1929875
35 Senadeera G, Kitamura T, Wada Y, Yanagida S. Photosensitization of nanocrystalline TiO2 films by a polymer with two carboxylic groups, poly (3-thiophenemalonic acid). Solar Energy Materials and Solar Cells , 2005, 88(3): 315–322
doi: 10.1016/j.solmat.2005.03.011
36 Lee J, Kim W, Lee H, Shin W, Jin S, Lee W, Kim M. Preparations and photovoltaic properties of dye–sensitized solar cells using thiophene–based copolymers as polymer electrolytes. Polymers for Advanced Technologies , 2006, 17(9–10): 709–714
doi: 10.1002/pat.766
37 Thampi K R, Kiwi J, Gr?tzel M. Methanation and photo-methanation of carbon dioxide at room temperature and atmospheric pressure. Nature , 1987, 327(6122): 506–508
doi: 10.1038/327506a0
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed