Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    2011, Vol. 4 Issue (4) : 467-471    https://doi.org/10.1007/s12200-011-0183-4
RESEARCH ARTICLE
Design of integrated-electrode tool for electrorheological finishing of optical glasses
Binbin CHEN1, Haobo CHENG1(), Hon Yuen TAM2, Hui LI1
1. School of Optoelectronics, Beijing Institute of Technology, Beijing 100081, China; 2. Department of Manufacturing Engineering and Engineering Management, City University of Hong Kong, Hong Kong, China
 Download: PDF(206 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Electrorheological (ER) finishing utilizes the flow of electrically stiffened abrasive fluid through a preset converging gap formed by the work-piece surface and a moving tool. An ER finishing tool characterized by cathode integrated with anode together is proposed, whose electric field distribution is finite-element-analyzed (FEA) and is useful to finish both conductive work-piece and non-conductive ones. Experiments were performed to finish a K9 glass by this tool. After 30 minutes polishing, the surface roughness was reduced from 8.46 to 2.53 nm Ra which is better than previously reported 2.9 nm. The result verified the validity of the integrated-electrodes tool for non-conductive optical glasses.

Keywords electrorheological (ER) finishing      roughness      material removal     
Corresponding Author(s): CHENG Haobo,Email:chenghaobo@tsinghua.org.cn   
Issue Date: 05 December 2011
 Cite this article:   
Binbin CHEN,Haobo CHENG,Hon Yuen TAM, et al. Design of integrated-electrode tool for electrorheological finishing of optical glasses[J]. Front Optoelec Chin, 2011, 4(4): 467-471.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-011-0183-4
https://academic.hep.com.cn/foe/EN/Y2011/V4/I4/467
Fig.1  Schematic diagram of pin-type ER finishing tool
Fig.2  Schematic diagram of integration tool. (1) Motor; (2) rotational axis (cathode); (3) cylindrical tube (anode); (4) work-piece; (5) worktable
Fig.3  Schematic diagram of the head of tool
Fig.4  (a) Head of tool; (b) its electric field analysis by ANSYS
dispersed phase (starch particle)continuous phase (silicone oil)abrasive (CeO2)rotational speed/(r·min-1)polished gap/mmvoltage/Vtime/min
35.2%52.8%12%15000.5300030
Tab.1  Experimental parameters
Fig.5  Relationship between surface roughness with polishing time
Fig.6  Surface roughness microstructure of finishing area. (a) Initial Ra=8.46 nm; (b) after finishing Ra=3.38 nm; (c) after finishing Ra=2.53 nm
1 Golini D. Magnetorheological finishing automates precision optics fabrication. Laser Focus World , 1998, 34(9):187-190
2 Golini D. Precision optics manufacturing using magnetorheological finishing (MRF). SPIE , 1999, 3739: 78-85
3 Cheng H B, Feng J Z, Wang Y W, Lei S T. Magnetic bingham fluid-assisted deterministic polishing for super-smooth surfaces. Biomedical and Life Sciences , 2005, 50(2): 172-178
4 Kordonski W I, Jacobs S D. Magnetorheological finishing. International Journal of Modern Physics , 1996, 10(23-24): 2837-2848
doi: 10.1142/S0217979296001288
5 Cheng H B, Yam Y, Wang Y T. Experimentation on MR fluid using a 2-axis wheel tool. Journal of Materials Processing Technology , 2009, 209(12-13): 5254-5261
doi: 10.1016/j.jmatprotec.2009.03.011
6 Miao C L, Shafrir S N, Lambropoulos J C, Mici J, Jacobs S D. Shear stress in magnetorheological finishing for glasses. Applied Optics , 2009, 48(13): 2585-2594
doi: 10.1364/AO.48.002585 pmid:19412219
7 Suzuki K, Ide A, Uematsu T, Kurobe T, Yasunaga N. Electrophoresis-polishing whit a partial electrode tool. In: Advances in Abrasive Technology Proceedings of the International Symposium . 1997, 48-52
8 Seoka J, Kim Y J, Jiang K I, Min B K, Lee S J. A study on the fabrication of curved surfaces using magnetorheological fluid finishing. International Journal of Machine Tools and Manufacture , 2007, 47(14): 2077-2090
9 Kuriyagawa T, Saeki M, Syoji K. Electrorheological fluid-assisted ultra-precision polishing for small three-dimensional parts. Precision Engineering , 2002, 26(4): 370-380
doi: 10.1016/S0141-6359(02)00112-5
10 Kim W B, Min B K, Lee S J. Development of a padless ultraprecision polishing method using electrorheological fluid. Journal of Materials Processing Technology , 2004, 155-156: 1293-1299
doi: 10.1016/j.jmatprotec.2004.04.239
11 Kim W B, Lee S J,Kim Y J, Lee E S. The electromechanical principle of electrorheological fluid-assisted polishing. International Journal of Machine Tools and Manufacture , 2003, 43(1): 81-88
doi: 10.1016/S0890-6955(02)00143-8
12 Kaku T, Kuriyagawa T, Yoshihara N. Electrorheological fluid-assisted polishing of WC micro aspherical glass moulding dies. International Journal of Manufacturing Technology and Management. 2006, 9(1-2): 109-119
13 Zhang L, Zhao Y W, He X S, Kuriyagawa T.An investigation of effective area in electrorheological fluid-assisted polishing of tungsten carbide. International Journal of Machine Tools and Manufacture , 2008, 48(3-4): 295-306
14 Preston F W. The theory and design of plate glass polishing machines. Journal of the Society Glass Technology , 1927, 11: 214-256
15 Li H, Cheng H B, Feng Y P, Tam H Y, Wen Y F. Investigation of the electrorheological fluid for optical finishing. Frontiers of Optoelectronics in China , 2011, 4(2): 213-216
doi: 10.1007/s12200-011-0170-9
[1] Haobo CHENG,Jingshi SU,Yong CHEN,Hon-Yuen TAM. Profile and roughness of electrorheological finishing optical surfaces[J]. Front. Optoelectron., 2015, 8(3): 306-313.
[2] Haobo CHENG, Yunpeng FENG, Tan WANG, Zhichao DONG. Magnetorheological finishing of optical surface combined with symmetrical tool function[J]. Front Optoelec Chin, 2010, 3(4): 408-412.
[3] Yao CHEN, Junbo FENG, Zhiping ZHOU, Christopher J. SUMMERS, David S. CITRIN, Jun YU. Simple technique to fabricate microscale and nanoscale silicon waveguide devices[J]. Front Optoelec Chin, 2009, 2(3): 308-311.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed