|
|
|
Dye-sensitized solar cells based on ZnO nanotetrapods |
Wei CHEN1,2, Shihe YANG1( ) |
| 1. Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, China; 2. Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China |
|
|
|
|
Abstract In this paper, we reviewed recent systematic studies of using ZnO nanotetrapods for photoanodes of dye-sensitized solar cells (DSSCs) in our group. First, the efficiency of power conversion was obtained by more than 3.27% by changes of conditions of dye loading and film thickness of ZnO nanotetrapod. Short-circuit photocurrent densities (Jsc) increased with the film thickness, Jsc would not be saturation even the film thickness was greater than 35 μm. The photoanode architecture had been charactered by good crystallinity, network forming ability, and limited electron-hopping interjunctions. Next, DSSCs with high efficiency was devised by infiltrating SnO2 nanoparticles into the ZnO nanotetrapods photoanodes. Due to material advantages of both constituents described as above, the composite photoanodes exhibited extremely large roughness factors (RFs), good charge collection, and tunable light scattering properties. By varying the composition of the composite photoanodes, we had achieved an efficiency of 6.31% by striking a balance between high efficiency of charge collection for SnO2 nanoparticles rich films and high light scattering ability for ZnO nanotetrapods rich films. An ultrathin layer of ZnO was found to form spontaneously on the SnO2 nanoparticles, which primarily was responsible for enhancing open-circuit photovoltage (Voc). We also identified that recombination in SnO2/ZnO composite films was mainly determined by ZnO shell condition on SnO2, whereas electron transport was greatly influenced by the morphologies and sizes of ZnO crystalline additives. Finally, we applied the composite photoanodes of SnO2 nanoparticles/ZnO nanotetrapods to flexible DSSCs by low temperature technique of “acetic acid gelation-mechanical press-ammonia activation.” The efficiency has been achieved by 4.91% on ITO-coated polyethylenenaphtalate substrate. The formation of a thin ZnO shell on SnO2 nanoparticles, after ammonia activation, was also found to be critical to boosting Voc and to improving inter–particles contacts. Mechanical press, apart from enhancing film durability, also significantly improved charge collection. ZnO nanotetrapods had been demonstrated to be a better additive than ZnO particles for the improvement of charge collection in SnO2/ZnO composite photoanodes regardless of whether they were calcined.
|
| Keywords
dye-sensitized solar cell (DSSC)
metal oxides
nanostructure
ZnO nanotetrapod
photoanode
flexible solar cell
|
|
Corresponding Author(s):
YANG Shihe,Email:chsyang@ust.hk
|
|
Issue Date: 05 March 2011
|
|
| 1 |
O’Regan B, Gratzel M. A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature , 1991, 353(6346): 737-740 doi: 10.1038/353737a0
|
| 2 |
Nazeeruddin M K, Kay A, Rodicio I, Humphry-baker R, Muller E, Liska P, Vlachopoulos N, Gratzel M. Conversion of light to electricity by Cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(Ii) charge-transfer sensitizers (X= Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes. Journal of the American Chemical Society , 1993, 115(14): 6382-6390 doi: 10.1021/ja00067a063
|
| 3 |
Martinson A B F, Hamann T W, Pellin M J, Hupp J T. New architectures for dye-senstized solar cells. Chemistry-A European Journal , 2008, 14(15): 4458-4467 doi: 10.1002/chem.200701667
|
| 4 |
Ku C H, Wu J J. Electron transport properties in ZnO nanowire array/nanoparticle composite dye-sensitized solar cells. Applied Physics Letters , 2007, 91(9): 093117 doi: 10.1063/1.2778454
|
| 5 |
Feng X J, Shankar K, Varghese O K, Paulose M, Latempa T J, Grimes C A. Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications. Nano Letters , 2008, 8(11): 3781-3786 doi: 10.1021/nl802096a pmid:18954124
|
| 6 |
Jiang C Y, Sun X W, Tan K W, Lo G Q, Kyaw A K K, Kwong D L. High-bendability flexible dye-sensitized solar cell with a nanoparticle-modified ZnO-nanowire electrode. Applied Physics Letters , 2008, 92(14): 143101 doi: 10.1063/1.2905271
|
| 7 |
Chen W, Zhang H F, Hsing I M, Yang S H. A new photoanode architecture of dye sensitized solar cell based on ZnO nanotetrapods with no need for calcination. Electrochemistry Communications , 2009, 11(5): 1057-1060 doi: 10.1016/j.elecom.2009.03.013
|
| 8 |
Yoshida T, Zhang J B, Komatsu D, Sawatani S, Minoura H, Pauporte T, Lincot D, Oekermann T, Schlettwein D, Tada H, Wohrle D, Funabiki K, Matsui M, Miura H, Yanagi H. Electrodeposition of inorganic/organic hybrid thin films. Advanced Functional Materials , 2009, 19(1): 17-43 doi: 10.1002/adfm.200700188
|
| 9 |
Qiu Y C, Chen W, Yang S H. Facile hydrothermal preparation of hierarchically assembled, porous single-crystalline ZnO nanoplates and their application in dye-sensitized solar cells. Journal of Materials Chemistry , 2010, 20(5): 1001-1006 doi: 10.1039/b917305f
|
| 10 |
Chen W, Qiu Y C, Zhong Y C, Wong K S, Yang S H. High-Efficiency Dye-Sensitized Solar Cells Based on the Composite Photoanocles of SnO2 Nanoparticles/ZnO Nanotetrapods. Journal of Physical Chemistry A , 2010, 114(9): 3127-3138 doi: 10.1021/jp908747z
|
| 11 |
Chen W, Qiu Y C, Yang S H. A new ZnO nanotetrapods/SnO2 nanoparticles composite photoanode for high efficiency flexible dye-sensitized solar cells. Physical Chemistry Chemical Physics , 2010, 12(32): 9494-9501 doi: 10.1039/c000584c pmid:20607161
|
| 12 |
Qiu Y C, Chen W, Yang S H. Double-layered photoanodes from variable-size anatase TiO2 nanospindles: a candidate for high-efficiency dye-sensitized solar cells. Angewandte Chemie International Edition , 2010, 49(21): 3675-3679 pmid:20376867
|
| 13 |
Law M, Greene L E, Johnson J C, Saykally R, Yang P D. Nanowire dye-sensitized solar cells. Nature Materials , 2005, 4(6): 455-459 doi: 10.1038/nmat1387 pmid:15895100
|
| 14 |
Liu B, Aydil E S. Growth of oriented single-crystalline rutile TiO(2) nanorods on transparent conducting substrates for dye-sensitized solar cells. Journal of the American Chemical Society , 2009, 131(11): 3985-3990 doi: 10.1021/ja8078972 pmid:19245201
|
| 15 |
Zhu K, Neale N R, Miedaner A, Frank A J. Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Letters , 2007, 7(1): 69-74 doi: 10.1021/nl062000o pmid:17212442
|
| 16 |
Yamaguchi T, Tobe N, Matsumoto D, Arakawa H. Highly efficient plastic substrate dye-sensitized solar cells using a compression method for preparation of TiO(2) photoelectrodes. Chemical Communications , 2007, (45): 4767-4769 doi: 10.1039/b709911h pmid:18004435
|
| 17 |
Chen C Y, Wang M K, Li J Y, Pootrakulchote N, Alibabaei L, Ngoc-le C H, Decoppet J D, Tsai J H, Gr?tzel C, Wu C G, Zakeeruddin S M, Gr?tzel M. Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells. ACS Nano , 2009, 3(10): 3103-3109 doi: 10.1021/nn900756s pmid:19746929
|
| 18 |
Dürr M, Schmid A, Obermaier M, Rosselli S, Yasuda A, Nelles G. Low-temperature fabrication of dye-sensitized solar cells by transfer of composite porous layers. Nature Materials , 2005, 4(8): 607-611 doi: 10.1038/nmat1433 pmid:16041379
|
| 19 |
Murakami T N, Kijitori Y, Kawashima N, Miyasaka T. UV light-assisted chemical vapor deposition of TiO2 for efficiency development at dye-sensitized mesoporous layers on plastic film electrodes. Chemistry Letters , 2003, 32(11): 1076-1077 doi: 10.1246/cl.2003.1076
|
| 20 |
Zhang D S, Yoshida T, Minoura H. Low-temperature fabrication of efficient porous titania photoelectrodes by hydrothermal crystallization at the solid/gas interface. Advanced Materials (Deerfield Beach, Fla.) , 2003, 15(10): 814-817 doi: 10.1002/adma.200304561
|
| 21 |
Uchida S, Timiha M, Takizawa H, Kawaraya M.Flexible dye-sensitized solar cells by 28 GHz microwave irradiation. Journal of Photochemistry and Photobiology a-Chemistry , 2004, 164(1-3): 93-96
|
| 22 |
Zhang Q F, Dandeneau C S, Zhou X Y, Cao G Z. ZnO Nanostructures for dye-sensitized solar cells. Advanced Materials (Deerfield Beach, Fla.) , 2009, 21(41): 4087-4108 doi: 10.1002/adma.200803827
|
| 23 |
Liu X Z, Luo Y H, Li H, Fan Y Z, Yu Z X, Lin Y, Chen L Q, Meng Q B. Room temperature fabrication of porous ZnO photoelectrodes for flexible dye-sensitized solar cells. Chemical Communications , 2007, (27): 2847-2849 doi: 10.1039/b700472a pmid:17609796
|
| 24 |
Shi Y T, Zhan C, Wang L D, Ma B B, Gao R, Zhu Y F, Qiu Y. Polydisperse spindle-shaped ZnO particles with their packing micropores in the photoanode for highly efficient quasi-solid dye-sensitized solar cells. Advanced Functional Materials , 2010, 20(3): 437-444 doi: 10.1002/adfm.200901318
|
| 26 |
Hsu Y F, Xi Y Y, Yip C T, Djurisic A B, Chan W K. Dye-sensitized solar cells using ZnO tetrapods. Journal of Applied Physics , 2008, 103(8): 083114 doi: 10.1063/1.2909907
|
| 27 |
Qiu Y F, Yang S H. ZnO nanotetrapods: Controlled vapor-phase synthesis and application for humidity sensing. Advanced Functional Materials , 2007, 17(8): 1345-1352 doi: 10.1002/adfm.200601128
|
| 28 |
Chiu W H, Lee C H, Cheng H M, Lin H F, Liao S C, Wu J M, Hsieh W F. Efficient electron transport in tetrapod-like ZnO metal-free dye-sensitized solar cells. Energy & Environmental Science , 2009, 2(6): 694-698 doi: 10.1039/b902595m
|
| 29 |
Bacsa R R, Dexpert-Ghys J, Verelst M, Falqui A, Machado B, Bacsa W S, Chen P, Zakeeruddin S M, Graetzel M, Serp P. Synthesis and structure-property correlation in shape-controlled ZnO nanoparticles prepared by chemical vapor synthesis and their application in dye-sensitized solar cells. Advanced Functional Materials , 2009, 19(6): 875-886 doi: 10.1002/adfm.200801049
|
| 30 |
Horiuchi H, Katoh R, Hara K, Yanagida M, Murata S, Arakawa H, Tachiya M. Electron injection efficiency from excited N3 into nanocrystalline ZnO films: Effect of (N3-Zn2+) aggregate formation. Journal of Physical Chemistry B , 2003, 107(11): 2570-2574 doi: 10.1021/jp0220027
|
| 31 |
Keis K, Lindgren J, Lindquist S E, Hagfeldt A. Studies of the adsorption process of Ru complexes in nanoporous ZnO electrodes. Langmuir , 2000, 16(10): 4688-4694 doi: 10.1021/la9912702
|
| 32 |
Chou T P, Zhang Q F, Fryxell G E, Cao G Z. Hierarchically structured ZnO film for dye-sensitized solar cells with enhanced energy conversion efficiency. Advanced Materials (Deerfield Beach, Fla.) , 2007, 19(18): 2588-2592 doi: 10.1002/adma.200602927
|
| 33 |
Wang Q, Ito S, Gr?tzel M, Fabregat-Santiago F, Mora-Seró I, Bisquert J, Bessho T, Imai H. Characteristics of high efficiency dye-sensitized solar cells. Journal of Physical Chemistry B , 2006, 110(50): 25210-25221 doi: 10.1021/jp064256o pmid:17165965
|
| 34 |
Wang Q, Moser J E, Gr?tzel M. Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. Journal of Physical Chemistry B , 2005, 109(31): 14945-14953 doi: 10.1021/jp052768h pmid:16852893
|
| 35 |
Fabregat-Santiago F, Bisquert J, Garcia-Belmonte G, Boschloo G, Hagfeldt A. Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy. Solar Energy Materials and Solar Cells , 2005, 87(1-4): 117-131 doi: 10.1016/j.solmat.2004.07.017
|
| 36 |
Fabregat-Santiago F, Barea E M, Bisquert J, Mor G K, Shankar K, Grimes C A. High carrier density and capacitance in TiO2 nanotube arrays induced by electrochemical doping. Journal of the American Chemical Society , 2008, 130(34): 11312-11316 doi: 10.1021/ja710899q pmid:18671396
|
| 37 |
Wang Q, Zhang Z, Zakeeruddin S M, Gratzel M. Enhancement of the performance of dye-sensitized solar cell by formation of shallow transport levels under visible light illumination. Journal of Physical Chemistry C , 2008, 112(17): 7084-7092 doi: 10.1021/jp800426y
|
| 38 |
Tan B, Wu Y Y. Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites. Journal of Physical Chemistry B , 2006, 110(32): 15932-15938 doi: 10.1021/jp063972n pmid:16898747
|
| 39 |
Thavasi V, Renugopalakrishnan V, Jose R, Ramakrishna S. Controlled electron injection and transport at materials interfaces in dye sensitized solar cells. Materials Science and Engineering R Reports , 2009, 63(3): 81-99 doi: 10.1016/j.mser.2008.09.001
|
| 40 |
Gan X Y, Li X M, Gao X D, Zhuge F W, Yu W D. ZnO nanowire/TiO2 nanoparticle photoanodes prepared by the ultrasonic irradiation assisted dip-coating method. Thin Solid Films , 2010, 518(17): 4809-4812 doi: 10.1016/j.tsf.2010.01.043
|
| 41 |
Yodyingyong S, Zhang Q F, Park K, Dandeneau C S, Zhou X Y, Triampo D, Cao G Z. ZnO nanoparticles and nanowire array hybrid photoanodes for dye-sensitized solar cells. Applied Physics Letters , 2010, 96(7): 073115 doi: 10.1063/1.3327339
|
| 42 |
Kumara G R R A, Tennakone K, Kottegoda I R M, Bandaranayake P K M, Konno A, Okuya M, Kaneko S, Murakami K. Efficient dye-sensitize photoelectrochemical cells made from nanocrystalline tin(IV) oxide-zinc oxide composite films. Semiconductor Science and Technology , 2003, 18(4): 312-318 doi: 10.1088/0268-1242/18/4/321
|
| 43 |
Niinobe D, Makari Y, Kitamura T, Wada Y, Yanagida S. Origin of enhancement in open-circuit voltage by adding ZnO to nanocrystalline SnO2 in dye-sensitized solar cells. Journal of Physical Chemistry B , 2005, 109(38): 17892-17900 doi: 10.1021/jp051753g pmid:16853295
|
| 44 |
Nozik A J, Memming R. Physical chemistry of semiconductor-liquid interfaces. Journal of Physical Chemistry , 1996, 100(31): 13061-13078 doi: 10.1021/jp953720e
|
| 45 |
Tan B, Toman E, Li Y G, Wu Y Y. Zinc stannate (Zn2SnO4) dye-sensitized solar cells. Journal of the American Chemical Society , 2007, 129(14): 4162-4163 doi: 10.1021/ja070804f pmid:17371032
|
| 46 |
Hore S, Nitz P, Vetter C, Prahl C, Niggemann M, Kern R. Scattering spherical voids in nanocrystalline TiO2- enhancement of efficiency in dye-sensitized solar cells. Chemical Communications , 2005, (15): 2011-2013 doi: 10.1039/b418658n pmid:15834489
|
| 47 |
Ferber J, Luther J. Computer simulations of light scattering and absorption in dye-sensitized solar cells. Solar Energy Materials and Solar Cells , 1998, 54(1-4): 265-275 doi: 10.1016/S0927-0248(98)00078-6
|
| 48 |
Kay A, Gratzel M. Dye-sensitized core-shell nanocrystals: Improved efficiency of mesoporous tin oxide electrodes coated with a thin layer of an insulating oxide. Chemistry of Materials , 2002, 14(7): 2930-2935 doi: 10.1021/cm0115968
|
| 49 |
Ito S, Murakami T N, Comte P, Liska P, Gratzel C, Nazeeruddin M K, Gratzel M. Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films , 2008, 516(14): 4613-4619 doi: 10.1016/j.tsf.2007.05.090
|
| 50 |
Jing B W, Zhang H, Zhang M H, Lu Z H, Shen T. Ruthenium(II) thiocyanate complexes containing 4 '-(4-phosphonatophenyl)-2,2 ': 6 ',2 “-terpyridine: synthesis, photophysics and photosensitization to nanocrystalline TiO2 electrodes. Journal of Materials Chemistry , 1998, 8(9): 2055-2060 doi: 10.1039/a802489h
|
| 51 |
Tennakone K, Kumara G R R A, Kottegoda I R M, Perera V P S. An efficient dye-sensitized photoelectrochemical solar cell made from oxides of tin and zinc. Chemical Communications , 1999, (1): 15-16 doi: 10.1039/a806801a
|
| 52 |
Fukai Y, Kondo Y, Mori S, Suzuki E. Highly efficient dye-sensitized SnO2 solar cells having sufficient electron diffusion length. Electrochemistry Communications , 2007, 9(7): 1439-1443 doi: 10.1016/j.elecom.2007.01.054
|
| 53 |
Koide N, Islam A, Chiba Y, Han L Y. Improvement of efficiency of dye-sensitized solar cells based on analysis of equivalent circuit. Journal of Photochemistry and Photobiology a-Chemistry , 2006, 182(3): 296-305
|
| 54 |
Wang Z S, Kawauchi H, Kashima T, Arakawa H. Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell. Coordination Chemistry Reviews , 2004, 248(13-14): 1381-1389 doi: 10.1016/j.ccr.2004.03.006
|
| 55 |
Gr?tzel M. Mesoscopic solar cells for electricity and hydrogen production from sunlight. Chemistry Letters , 2005, 34(1): 8-13 doi: 10.1246/cl.2005.8
|
| 56 |
Koops S E, Durrant J R. Transient emission studies of electron injection in dye sensitised solar cells. Inorganica Chimica Acta , 2008, 361(3): 663-670 doi: 10.1016/j.ica.2007.05.021
|
| 57 |
Koops S E, O’Regan B C, Barnes P R F, Durrant J R. Parameters influencing the efficiency of electron injection in dye-sensitized solar cells. Journal of the American Chemical Society , 2009, 131(13): 4808-4818 doi: 10.1021/ja8091278 pmid:19334776
|
| 58 |
Oekermann T, Zhang D, Yoshida T, Minoura H. Electron transport and back reaction in nanocrystalline TiO2 films prepared by hydrothermal crystallization. Journal of Physical Chemistry B , 2004, 108(7): 2227-2235 doi: 10.1021/jp034918z
|
| 59 |
Zhu K, Vinzant T B, Neale N R, Frank A J. Removing structural disorder from oriented TiO2 nanotube arrays: reducing the dimensionality of transport and recombination in dye-sensitized solar cells. Nano Letters , 2007, 7(12): 3739-3746 doi: 10.1021/nl072145a pmid:17983250
|
| 60 |
Demir M M, Munoz-Espi R, Lieberwirth I, Wegner G. Precipitation of monodisperse ZnO nanocrystals via acid-catalyzed esterification of zinc acetate. Journal of Materials Chemistry , 2006, 16(28): 2940-2947 doi: 10.1039/b601451h
|
| 61 |
van de Lagemaat J, Frank A J. Nonthermalized electron transport in dye-sensitized nanocrystalline TiO2 films: Transient photocurrent and random-walk modeling studies. Journal of Physical Chemistry B , 2001, 105(45): 11194-11205 doi: 10.1021/jp0118468
|
| 62 |
Colodrero S, Mihi A, Haggman L, Ocana M, Boschloo G, Hagfeldt A, Miguez H. Porous one-dimensional photonic crystals improve the power-conversion efficiency of dye-sensitized solar cells. Advanced Materials (Deerfield Beach, Fla.) , 2009, 21(7): 764-770 doi: 10.1002/adma.200703115
|
| 63 |
Park N G, Kim K M, Kang M G, Ryu K S, Chang S H, Shin Y J. Chemical sintering of nanoparticles: A methodology for low-temperature fabrication of dye-sensitized TiO2 films. Advanced Materials (Deerfield Beach, Fla.) , 2005, 17(19): 2349-2353 doi: 10.1002/adma.200500288
|
| 64 |
Zhang D S, Yoshida T, Oekermann T, Furuta K, Minoura H. Room-temperature synthesis of porous nanoparticulate TiO2 films for flexible dye-sensitized solar cells. Advanced Functional Materials , 2006, 16(9): 1228-1234 doi: 10.1002/adfm.200500700
|
| 65 |
Toivola M, Halme J, Miettunen K, Aitola K, Lund P D. Nanostructured dye solar cells on flexible substrates-review. International Journal of Energy Research , 2009, 33(13): 1145-1160 doi: 10.1002/er.1605
|
| 66 |
Zhang Q F, Chou T P, Russo B, Jenekhe S A, Cao G Z. Aggregation of ZnO nanocrystallites for high conversion efficiency in dye-sensitized solar cells. Angewandte Chemie International Edition , 2008, 47(13): 2402-2406 doi: 10.1002/anie.200704919 pmid:18286557
|
| 67 |
Han L Y, Koide N, Chiba Y, Mitate T. Modeling of an equivalent circuit for dye-sensitized solar cells. Applied Physics Letters , 2004, 84(13): 2433-2435 doi: 10.1063/1.1690495
|
| 68 |
Han L Y, Koide N, Chiba Y, Islam A, Mitate T. Modeling of an equivalent circuit for dye-sensitized solar cells: improvement of efficiency of dye-sensitized solar cells by reducing internal resistance. Comptes Rendus. Chimie , 2006, 9(5-6): 645-651 doi: 10.1016/j.crci.2005.02.046
|
| 69 |
Chen H W, Hsu C Y, Chen J G, Lee K M, Wang C C, Huang K C, Ho K C. Plastic dye-sensitized photo-supercapacitor using electrophoretic deposition and compression methods. Journal of Power Sources , 2010, 195(18): 6225-6231 doi: 10.1016/j.jpowsour.2010.01.009
|
| 70 |
Grinis L, Kotlyar S, Ruhle S, Grinblat J, Zaban A. Conformal nano-sized inorganic coatings on mesoporous TiO2 films for low-temperature dye-sensitized solar cell fabrication. Advanced Functional Materials , 2010, 20(2): 282-288 doi: 10.1002/adfm.200901717
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|