|
|
|
Spontaneous emission rate enhancement of nano-structured silicon by surface plasmon polariton |
Xue FENG, Fang LIU, Yidong HUANG( ) |
| State Key Laboratory of Integrated Optoelectronics, Department of Electronic Engineering, Tsinghua University, Beijing 100084, China |
|
|
|
|
Abstract Surface plasmon polariton (SPP) is an attractive candidate to improve internal quantum efficiency (QE) of spontaneous emission (SE) from nano-structured silicon (Si) including nano-porous silicon (NP-Si) and silicon nanocrystal (Si-NC). Since the SPP resonant frequency of common metals, e.g., gold (Au), silver (Ag), copper (Cu), and aluminum (Al), is too high, the SPP resonance has to be engineered to match the luminescence from nano-structured Si. For this purpose, we have proposed and demonstrated three approaches including metal-rich Au(1-α)-SiO2(α) cermet SPP waveguide (WG), compound layer structure WG and metallic grating. In this paper, those approaches are reviewed and discussed. According to the calculated results, such three methods could effectively enhance SE rate from NP-Si or Si-NCs and show potential in developing high efficiency Si based light sources with electric pump.
|
| Keywords
spontaneous emission (SE)
silicon nanocrystal (Si-NC)
surface plasmon polariton (SPP)
Purcell effect
|
|
Corresponding Author(s):
HUANG Yidong,Email:yidonghuang@tsinghua.edu.cn
|
|
Issue Date: 05 March 2012
|
|
| 1 |
Daldosso N, Pavesi L. Nanosilicon photonics. Laser & Photonics Reviews , 2009, 3(6): 508–534 doi: 10.1002/lpor.200810045
|
| 2 |
Canham L T. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Applied Physics Letters , 1990, 57(10): 1046–1048 doi: 10.1063/1.103561
|
| 3 |
Qin G G, Li Y J. Photoluminescence mechanism model for oxidized porous silicon and nanoscale-silicon-particle-embedded silicon oxide. Physical Review B: Condensed Matter and Materials Physics , 2003, 68(8): 085309 doi: 10.1103/PhysRevB.68.085309
|
| 4 |
Franzò G, Priolo F, Coffa S, Polman A, Carnera A. Room temperature electroluminescence from Er-doped crystalline silicon. Applied Physics Letters , 1994, 64(17): 2235–2237 doi: 10.1063/1.111655
|
| 5 |
Rong H S, Liu A, Jones R, Cohen O, Hak D, Nicolaescu R, Fang A, Paniccia M. An all-silicon Raman laser. Nature , 2005, 433(7023): 292–294 doi: 10.1038/nature03273 pmid:15635371
|
| 6 |
Kovalev D, Heckler H, Ben-Chorin M, Polisski G, Schwartzkopff M, Koch F. Breakdown of the k-conservation rule in Si nanocrystals. Physical Review Letters , 1998, 81(13): 2803–2806 doi: 10.1103/PhysRevLett.81.2803
|
| 7 |
Godefroo S, Hayne M, Jivanescu M, Stesmans A, Zacharias M, Lebedev O I, Van Tendeloo G, Moshchalkov V V. Classification and control of the origin of photoluminescence from Si nanocrystals. Nature Nanotechnology , 2008, 3(3): 174–178 doi: 10.1038/nnano.2008.7 pmid:18654491
|
| 8 |
Bianucci P, Rodríguez J R, Clements C M, Veinot J G C, Meldrum A. Silicon nanocrystal luminescence coupled to whispering gallery modes in optical fibers. Journal of Applied Physics , 2009, 105(2): 023108 doi: 10.1063/1.3072623
|
| 9 |
Wilson W L, Szajowski P F, Brus L E. Quantum confinement in size-selected, surface-oxidized silicon nanocrystals. Science , 1993, 262(5137): 1242–1244 doi: 10.1126/science.262.5137.1242 pmid:17772645
|
| 10 |
Pavesi L, Dal Negro L, Mazzoleni C, Franzò G, Priolo F. Optical gain in silicon nanocrystals. Nature , 2000, 408(6811): 440–444 doi: 10.1038/35044012 pmid:11100719
|
| 11 |
Gontijo I, Boroditsky M, Yablonovitch E, Keller S, Mishra U, DenBaars S. Coupling of InGaN quantum-well photoluminescence to silver surface plasmons. Physical Review B: Condensed Matter and Materials Physics , 1999, 60(16): 11564–11567 doi: 10.1103/PhysRevB.60.11564
|
| 12 |
Okamoto K, Niki I, Shvartser A, Narukawa Y, Mukai T, Scherer A. Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nature Materials , 2004, 3(9): 601–605 doi: 10.1038/nmat1198 pmid:15322535
|
| 13 |
Sun G, Khurgin J B, Soref R A. Practicable enhancement of spontaneous emission using surface plasmons. Applied Physics Letters , 2007, 90(11): 111107 doi: 10.1063/1.2539745
|
| 14 |
Khurgin J B, Sun G, Soref R A. Enhancement of luminescence efficiency using surface plasmon polaritons: figures of merit. Journal of the Optical Society of America B, Optical Physics , 2007, 24(8): 1968–1980 doi: 10.1364/JOSAB.24.001968
|
| 15 |
Lai C W, Au J, Ong H C. Surface-plasmon-mediated emission from metal-capped ZnO thin film. Applied Physics Letters , 2005, 86(25): 251105 doi: 10.1063/1.1954883
|
| 16 |
Purcell E M. Spontaneous emission probabilities at radio frequencies. Physical Review , 1946, 69(1946): 681
|
| 17 |
Hu X L, Huang Y D, Zhang W, Peng J D. Dominating radiative recombination in a nanoporous silicon layer with a metal-rich Au(1-α)-SiO2(α) cermet waveguide. Applied Physics Letters , 2006, 89(8): 081112 doi: 10.1063/1.2336215
|
| 18 |
Tang X, Wang Y X, Ke W W, Feng X, Huang Y D, Peng J D. Internal quantum efficiency enhancement of silicon nanocrystals using doublelayer Au-rich cermet films. Optics Communications , 2010, 283(13): 2754–2757 doi: 10.1016/j.optcom.2010.02.043
|
| 19 |
Tang X, Huang Y D, Wang Y, Zhang W, Peng J. Tunable surface plasmons for emission enhancement of silicon nanocrystals using Ag-poor cermet layer. Applied Physics Letters , 2008, 92(25): 251116 doi: 10.1063/1.2953085
|
| 20 |
Feng X, Liu F, Huang Y D. Calculated plasmonic enhancement of spontaneous emission from silicon nanocrystals with metallic gratings. Optics Communications , 2010, 283(13): 2758–2761 doi: 10.1016/j.optcom.2010.03.016
|
| 21 |
Feng X, Liu F, Huang Y D. Spontaneous emission rate enhancement of silicon nanocrystals by plasmonic band gap on copper grating. Journal of Lightwave Technology , 2010, 28(9): 1420–1430 doi: 10.1109/JLT.2010.2042788
|
| 22 |
Zayatsa A V, Smolyaninovb I I, Maradudinc A A. Nano-optics of surface plasmon polaritons. Physics Reports , 2005, 408(3-4): 131–314 doi: 10.1016/j.physrep.2004.11.001
|
| 23 |
Spanier J E, Herman I P. Use of hybrid phenomenological and statistical effective-medium theories of dielectric functions to model the infrared reflectance of porous SiC films. Physical Review B: Condensed Matter , 2000, 61(15): 10437–10450 doi: 10.1103/PhysRevB.61.10437
|
| 24 |
Barnes W L, Kitson S C, Preist T W, Sambles J R. Photonic surfaces for surface-plasmon Polaritons. Journal of the Optical Society of America A , 1997, 14(7): 1654–1661 doi: 10.1364/JOSAA.14.001654
|
| 25 |
Chandezon J, Dupuis M T, Cornet G, Maystre D. Multicoated gratings: a differential formalism application in the entire optical region. Journal of the Optical Society of America , 1982, 72(7): 839–846 doi: 10.1364/JOSA.72.000839
|
| 26 |
Feng X, Ke W W, Tang X, Huang Y D, Zhang W, Peng J D. Numerical solution of surface plasmon polariton mode propagating on spatially periodic metal-dielectric interface. Journal of the Optical Society of America B, 2009, 26(12): B11–B20 doi: 10.1364/JOSAB.26.000B11
|
| 27 |
Barnes W L, Preist T W, Kitson S C, Sambles J R. Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings. Physical Review B: Condensed Matter and Materials Physics , 1996, 54(9): 6227–6244 doi: 10.1103/PhysRevB.54.6227 pmid:9986638
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|