Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec    2012, Vol. 5 Issue (1) : 51-62    https://doi.org/10.1007/s12200-012-0185-x
REVIEW ARTICLE
Spontaneous emission rate enhancement of nano-structured silicon by surface plasmon polariton
Xue FENG, Fang LIU, Yidong HUANG()
State Key Laboratory of Integrated Optoelectronics, Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
 Download: PDF(670 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Surface plasmon polariton (SPP) is an attractive candidate to improve internal quantum efficiency (QE) of spontaneous emission (SE) from nano-structured silicon (Si) including nano-porous silicon (NP-Si) and silicon nanocrystal (Si-NC). Since the SPP resonant frequency of common metals, e.g., gold (Au), silver (Ag), copper (Cu), and aluminum (Al), is too high, the SPP resonance has to be engineered to match the luminescence from nano-structured Si. For this purpose, we have proposed and demonstrated three approaches including metal-rich Au(1-α)-SiO2(α) cermet SPP waveguide (WG), compound layer structure WG and metallic grating. In this paper, those approaches are reviewed and discussed. According to the calculated results, such three methods could effectively enhance SE rate from NP-Si or Si-NCs and show potential in developing high efficiency Si based light sources with electric pump.

Keywords spontaneous emission (SE)      silicon nanocrystal (Si-NC)      surface plasmon polariton (SPP)      Purcell effect     
Corresponding Author(s): HUANG Yidong,Email:yidonghuang@tsinghua.edu.cn   
Issue Date: 05 March 2012
 Cite this article:   
Xue FENG,Fang LIU,Yidong HUANG. Spontaneous emission rate enhancement of nano-structured silicon by surface plasmon polariton[J]. Front Optoelec, 2012, 5(1): 51-62.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-012-0185-x
https://academic.hep.com.cn/foe/EN/Y2012/V5/I1/51
Fig.1  Schematic of SPP at metal-dielectric interface and reference coordinate system
Fig.2  Dependence on SiO volume fraction of plasmon frequency (square) and high frequency dielectric constant (circle) in Drude model of metal-rich cermet. Inset: schematic structure of nanoporous Si layer with a Au(1-)-SiO() cermet WG
Fig.3  (a) Dispersion of Au(1-)-SiO() cermet WG with different components. Inset: typical PL spectrum of NP-Si. Shaded area corresponds to frequency range between two half-maxima; (b) PF with different components versus photon energy . Inset: increase of PF with the increase of SiO volume fraction , fixing the photon energy at 1.718 eV
Fig.4  Distributions of internal QE with and without cermet WG
Fig.5  Schematic of monolayer and double layer structures
Fig.6  || and PF distributions in (a) monolayer; (b) double layer; SP WG ( = = 30 nm). The calculated ||field and PF are shown as lines and circles, respectively. And different colors indicates two components of =0 and 0.2
Fig.7  (a) Ag/Ag-poor cermet SPP WG; (b) SPP WG with pure Au or Ag film; (c) two-layer SPP WG
Fig.8  (a) Dispersion of Au, Ag, Ag/Ag-poor cermet SP WG; (b) dispersion of the Ag/Ag-poor cermet SP WG with different SiN fractions
Fig.9  Dependence on SiN fraction of (a) DOS; (b) PF with different thicknesses of Ag-poor cermet layer, fixing the photon energy at 1.7106 eV (equivalent to the wavelength at 725 nm). The yellow and wine dot lines are the reference results of 20 nm thick Au and Ag film, respectively
Fig.10  Schematic cylindrical periodic dielectric-metal interface and reference coordinate system. Interface consists of dielectric in the region >() and metal in the region <()
Fig.11  Calculated dispersion curves for Cu-SiN interface with sinusoidal shape with period = 90-140 nm and depth = 0.1
Fig.12  Normalized spatial distribution of magnetic field normal to symmetry ||: (a) for low frequency mode; (b) high frequency mode at BE-frequency. The regions of high field strength are shown as white
Fig.13  Calculated PF distribution for Cu-SiN grating within range of 30 nm≤≤270 nm and -120 nm≤≤120 nm by setting = 120 nm and = 0.1. Regions of high PFs are shown as white
Fig.14  Calculated max PF and related BE-frequency versus various period for sinusoidal shaped Au, Cu, Ag and Al-SiN interface with = 0.1
Fig.15  Enhanced QE versus various PF and original QE for (a) 1%<<10% and (b) 10%<<60%
1 Daldosso N, Pavesi L. Nanosilicon photonics. Laser &amp; Photonics Reviews , 2009, 3(6): 508–534
doi: 10.1002/lpor.200810045
2 Canham L T. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Applied Physics Letters , 1990, 57(10): 1046–1048
doi: 10.1063/1.103561
3 Qin G G, Li Y J. Photoluminescence mechanism model for oxidized porous silicon and nanoscale-silicon-particle-embedded silicon oxide. Physical Review B: Condensed Matter and Materials Physics , 2003, 68(8): 085309
doi: 10.1103/PhysRevB.68.085309
4 Franzò G, Priolo F, Coffa S, Polman A, Carnera A. Room temperature electroluminescence from Er-doped crystalline silicon. Applied Physics Letters , 1994, 64(17): 2235–2237
doi: 10.1063/1.111655
5 Rong H S, Liu A, Jones R, Cohen O, Hak D, Nicolaescu R, Fang A, Paniccia M. An all-silicon Raman laser. Nature , 2005, 433(7023): 292–294
doi: 10.1038/nature03273 pmid:15635371
6 Kovalev D, Heckler H, Ben-Chorin M, Polisski G, Schwartzkopff M, Koch F. Breakdown of the k-conservation rule in Si nanocrystals. Physical Review Letters , 1998, 81(13): 2803–2806
doi: 10.1103/PhysRevLett.81.2803
7 Godefroo S, Hayne M, Jivanescu M, Stesmans A, Zacharias M, Lebedev O I, Van Tendeloo G, Moshchalkov V V. Classification and control of the origin of photoluminescence from Si nanocrystals. Nature Nanotechnology , 2008, 3(3): 174–178
doi: 10.1038/nnano.2008.7 pmid:18654491
8 Bianucci P, Rodríguez J R, Clements C M, Veinot J G C, Meldrum A. Silicon nanocrystal luminescence coupled to whispering gallery modes in optical fibers. Journal of Applied Physics , 2009, 105(2): 023108
doi: 10.1063/1.3072623
9 Wilson W L, Szajowski P F, Brus L E. Quantum confinement in size-selected, surface-oxidized silicon nanocrystals. Science , 1993, 262(5137): 1242–1244
doi: 10.1126/science.262.5137.1242 pmid:17772645
10 Pavesi L, Dal Negro L, Mazzoleni C, Franzò G, Priolo F. Optical gain in silicon nanocrystals. Nature , 2000, 408(6811): 440–444
doi: 10.1038/35044012 pmid:11100719
11 Gontijo I, Boroditsky M, Yablonovitch E, Keller S, Mishra U, DenBaars S. Coupling of InGaN quantum-well photoluminescence to silver surface plasmons. Physical Review B: Condensed Matter and Materials Physics , 1999, 60(16): 11564–11567
doi: 10.1103/PhysRevB.60.11564
12 Okamoto K, Niki I, Shvartser A, Narukawa Y, Mukai T, Scherer A. Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nature Materials , 2004, 3(9): 601–605
doi: 10.1038/nmat1198 pmid:15322535
13 Sun G, Khurgin J B, Soref R A. Practicable enhancement of spontaneous emission using surface plasmons. Applied Physics Letters , 2007, 90(11): 111107
doi: 10.1063/1.2539745
14 Khurgin J B, Sun G, Soref R A. Enhancement of luminescence efficiency using surface plasmon polaritons: figures of merit. Journal of the Optical Society of America B, Optical Physics , 2007, 24(8): 1968–1980
doi: 10.1364/JOSAB.24.001968
15 Lai C W, Au J, Ong H C. Surface-plasmon-mediated emission from metal-capped ZnO thin film. Applied Physics Letters , 2005, 86(25): 251105
doi: 10.1063/1.1954883
16 Purcell E M. Spontaneous emission probabilities at radio frequencies. Physical Review , 1946, 69(1946): 681
17 Hu X L, Huang Y D, Zhang W, Peng J D. Dominating radiative recombination in a nanoporous silicon layer with a metal-rich Au(1-α)-SiO2(α) cermet waveguide. Applied Physics Letters , 2006, 89(8): 081112
doi: 10.1063/1.2336215
18 Tang X, Wang Y X, Ke W W, Feng X, Huang Y D, Peng J D. Internal quantum efficiency enhancement of silicon nanocrystals using doublelayer Au-rich cermet films. Optics Communications , 2010, 283(13): 2754–2757
doi: 10.1016/j.optcom.2010.02.043
19 Tang X, Huang Y D, Wang Y, Zhang W, Peng J. Tunable surface plasmons for emission enhancement of silicon nanocrystals using Ag-poor cermet layer. Applied Physics Letters , 2008, 92(25): 251116
doi: 10.1063/1.2953085
20 Feng X, Liu F, Huang Y D. Calculated plasmonic enhancement of spontaneous emission from silicon nanocrystals with metallic gratings. Optics Communications , 2010, 283(13): 2758–2761
doi: 10.1016/j.optcom.2010.03.016
21 Feng X, Liu F, Huang Y D. Spontaneous emission rate enhancement of silicon nanocrystals by plasmonic band gap on copper grating. Journal of Lightwave Technology , 2010, 28(9): 1420–1430
doi: 10.1109/JLT.2010.2042788
22 Zayatsa A V, Smolyaninovb I I, Maradudinc A A. Nano-optics of surface plasmon polaritons. Physics Reports , 2005, 408(3-4): 131–314
doi: 10.1016/j.physrep.2004.11.001
23 Spanier J E, Herman I P. Use of hybrid phenomenological and statistical effective-medium theories of dielectric functions to model the infrared reflectance of porous SiC films. Physical Review B: Condensed Matter , 2000, 61(15): 10437–10450
doi: 10.1103/PhysRevB.61.10437
24 Barnes W L, Kitson S C, Preist T W, Sambles J R. Photonic surfaces for surface-plasmon Polaritons. Journal of the Optical Society of America A , 1997, 14(7): 1654–1661
doi: 10.1364/JOSAA.14.001654
25 Chandezon J, Dupuis M T, Cornet G, Maystre D. Multicoated gratings: a differential formalism application in the entire optical region. Journal of the Optical Society of America , 1982, 72(7): 839–846
doi: 10.1364/JOSA.72.000839
26 Feng X, Ke W W, Tang X, Huang Y D, Zhang W, Peng J D. Numerical solution of surface plasmon polariton mode propagating on spatially periodic metal-dielectric interface. Journal of the Optical Society of America B, 2009, 26(12): B11–B20
doi: 10.1364/JOSAB.26.000B11
27 Barnes W L, Preist T W, Kitson S C, Sambles J R. Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings. Physical Review B: Condensed Matter and Materials Physics , 1996, 54(9): 6227–6244
doi: 10.1103/PhysRevB.54.6227 pmid:9986638
[1] Chenhao WAN, Guanghao RUI, Jian CHEN, Qiwen ZHAN. Detection of photonic orbital angular momentum with micro- and nano-optical structures[J]. Front. Optoelectron., 2019, 12(1): 88-96.
[2] Yidong HUANG,Kaiyu CUI,Fang LIU,Xue FENG,Wei ZHANG. Novel optoelectronic characteristics from manipulating general energy-bands by nanostructures[J]. Front. Optoelectron., 2016, 9(2): 151-159.
[3] Jian WANG. A review of recent progress in plasmon-assisted nanophotonic devices[J]. Front. Optoelectron., 2014, 7(3): 320-337.
[4] Gongli XIAO, Xiang JI, Linfei GAO, Xingjun WANG, Zhiping ZHOU. Effect of dipole location on profile properties of symmetric surface plasmon polariton mode in Au/Al2O3/Au waveguide[J]. Front Optoelec, 2012, 5(1): 63-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed