Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec    2012, Vol. 5 Issue (1) : 94-98    https://doi.org/10.1007/s12200-012-0190-0
RESEARCH ARTICLE
Design of unidirectional emission silicon/III-V laser for on-chip interconnects
Chucai GUO1,2, Yongzhen HUANG1(), Yuede YANG1, Xiaomeng LV1, Qifeng YAO1
1. State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; 2. College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073, China
 Download: PDF(320 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We propose a unidirectional emission silicon/III-V laser, which comprises an III-V quantum wells microdisk connected to an output waveguide and a silicon-on-insulator (SOI) waveguide. Characteristics of the III-V microdisk with an output waveguide and mode coupling between the III-V output waveguide and the SOI waveguide are investigated by three-dimensional (3D) finite-difference time-domain (FDTD) method. Simulation results show that the Q factor of a coupled mode for a 7.5 μm diameter microdisk connected to a 0.5 μm wide output waveguide is about 8.5×104. And the coupling efficiency between the III-V output waveguide and the SOI waveguide is over 96% when the III-V waveguide width is 0.5 μm, the SOI waveguide width is 0.565 μm and the vertical gap between those two waveguides is 0.1 μm. The proposed hybrid laser would be of valuable applications for on-chip interconnects.

Keywords silicon/III-V laser      unidirectional emission      three-dimensional (3D) finite-difference time-domain (FDTD) method      on-chip interconnects     
Corresponding Author(s): HUANG Yongzhen,Email:yzhuang@semi.ac.cn   
Issue Date: 05 March 2012
 Cite this article:   
Yongzhen HUANG,Yuede YANG,Xiaomeng LV, et al. Design of unidirectional emission silicon/III-V laser for on-chip interconnects[J]. Front Optoelec, 2012, 5(1): 94-98.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-012-0190-0
https://academic.hep.com.cn/foe/EN/Y2012/V5/I1/94
Fig.1  Schematic figure of unidirectional silicon/III-V hybrid laser
Fig.2  Intensity spectrum for microdisk with output waveguide obtained by FDTD simulation and Padé approximation
Fig.3  Intensity spectra for perfect microdisk without output waveguide. Two resonant modes correspond to modes (a) A; (b) B; (c) C in Fig. 2
Fig.4  Magnetic field component distribution of mode A in Fig. 2 at (a) center plane of gain material layer; (b) plane. Field in output waveguide is magnified 30 times
Fig.5  Effective index of fundament mode as function of mode wavelength for III-V waveguide and three SOI waveguides with different widths
Fig.6  distribution of fundament mode at the cross section of (a) III-V waveguide and (b) SOI waveguide with = 565 nm
Fig.7  Steady-state distribution of at (a) plane of coupled waveguides; (b) center plane of III-V waveguide; and (c) center plane of SOI waveguide
1 Vlasov Y A, McNab S J. Losses in single-mode silicon-on-insulator strip waveguides and bends. Optics Express , 2004, 12(8): 1622-1631
doi: 10.1364/OPEX.12.001622 pmid:19474988
2 Takano H, Song B S, Asano T, Noda S. Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal. Optics Express , 2006, 14(8): 3491-3496
doi: 10.1364/OE.14.003491 pmid:19516495
3 Brouckaert J, Bogaerts W, Dumon P, Van Thourhout D, Baets R. Planar concave grating demultiplexer fabricated on a nanophotonic silicon-on-insulator platform. Journal of Lightwave Technology , 2007, 25(5): 1269-1275
doi: 10.1109/JLT.2007.893025
4 Xu Q F, Manipatruni S, Schmidt B, Shakya J, Lipson M. 12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators. Optics Express , 2007, 15(2): 430-436
doi: 10.1364/OE.15.000430 pmid:19532260
5 Michel J, Liu J F, Kimerling L C. High-performance Ge-on-Si photodetectors. Nature Photonics , 2010, 4(8): 527-534
doi: 10.1038/nphoton.2010.157
6 van Campenhout J, Rojo Romeo P, Regreny P, Seassal C, van Thourhout D, Verstuyft S, Di Cioccio L, Fedeli J M, Lagahe C, Baets R. Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit. Optics Express , 2007, 15(11): 6744-6749
doi: 10.1364/OE.15.006744 pmid:19546984
7 van Campenhout J, Liu L, Romeo P R, van Thourhout D, Seassal C, Regreny P, Di Cioccio L, Fedeli J M, Baets R. A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks. IEEE Photonics Technology Letters , 2008, 20(16): 1345-1347
doi: 10.1109/LPT.2008.926857
8 Liang D, Fiorentino M, Okumura T, Chang H H, Spencer D T, Kuo Y H, Fang A W, Dai D, Beausoleil R G, Bowers J E. Electrically-pumped compact hybrid silicon microring lasers for optical interconnects. Optics Express , 2009, 17(22): 20355-20364
doi: 10.1364/OE.17.020355 pmid:19997264
9 Yang Y D, Wang S J, Huang Y Z. Investigation of mode coupling in a microdisk resonator for realizing directional emission. Optics Express , 2009, 17(25): 23010-23015
doi: 10.1364/OE.17.023010 pmid:20052227
10 Wang S J, Lin J D, Huang Y Z, Yang Y D, Che K J, Xiao J L, Du Y, Fan Z C. AlGaInAs/InP microcylinder lasers connected with an output waveguide. IEEE Photonics Technology Letters , 2010, 22(18): 1349-1351
doi: 10.1109/LPT.2010.2056361
11 Roelkens G, Van Thourhout D, Baets R. Ultra-thin benzocyclobutene bonding of III-V dies onto SOI substrates. Electronics Letters , 2005, 41(9): 561-562
doi: 10.1049/el:20050807
12 Guo C C, Huang Y Z. Mode analysis for in-plane emission microdisk resonator. In: Proceedings of SOPO’2011 . 2011, 1-3
13 Guo W H, Li W J, Huang Y Z. Computation of resonator frequencies and quality factors of cavities by FDTD technique and Padé approximation. IEEE Microwave and Wireless Components Letters , 2001, 11(5): 223-225
doi: 10.1109/7260.923035
14 Chutinan A, Noda S. Waveguides and waveguide bends in two-dimensional photonic crystal slabs. Physical Review B: Condensed Matter and Materials Physics , 2000, 62(7): 4488-4492
doi: 10.1103/PhysRevB.62.4488
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed