Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec    2012, Vol. 5 Issue (1) : 112-116    https://doi.org/10.1007/s12200-012-0193-x
RESEARCH ARTICLE
MBE growth of tensile-strained Ge quantum wells and quantum dots
Yijie HUO1(), Hai LIN2, Robert CHEN1, Yiwen RONG1, Theodore I. KAMINS1, James S. HARRIS1
1. Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA; 2. Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA
 Download: PDF(312 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Germanium (Ge) has gained much interest due to the potential of becoming a direct band gap material and an efficient light source for the future complementary metal-oxide-semiconductor (CMOS) compatible photonic integrated circuits. In this paper, highly biaxial tensile strained Ge quantum wells (QWs) and quantum dots (QDs) grown by molecular beam epitaxy are presented. Through relaxed step-graded InGaAs buffer layers with a larger lattice constant, up to 2.3% tensile-strained Ge QWs as well as up to 2.46% tensile-strained Ge QDs are obtained. Characterizations show the good material quality as well as low threading dislocation density. A strong increase of photoluminescence (PL) with highly tensile strained Ge layers at low temperature suggests the existence of a direct band gap semiconductor.

Keywords Si photonics      germanium (Ge)      tensile strained      photoluminescence (PL)     
Corresponding Author(s): HUO Yijie,Email:yijiehuo@gmail.com   
Issue Date: 05 March 2012
 Cite this article:   
Yijie HUO,Hai LIN,Robert CHEN, et al. MBE growth of tensile-strained Ge quantum wells and quantum dots[J]. Front Optoelec, 2012, 5(1): 112-116.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-012-0193-x
https://academic.hep.com.cn/foe/EN/Y2012/V5/I1/112
Fig.1  Cross-section TEM image for strained Ge samples. (a) Schematic of the sample structure; (b) cross-section TEM image of InGaAs buffer layers and the Ge QW; the dash circles are the two selective area diffraction regions in Fig. 2; (c) cross-section TEM image of Ge QW; and (d) high resolution TEM image of Ge QW region
Fig.2  (a) Selected area diffraction; (b,c) zoom-in images from InGaAs and InGaAs buffer layers; (d) diffraction pattern and (e, f) zoom-in images from InGaAs and Ge layers shown in Fig. 1(b)
indium concentration/%theoretical Ge strain/%tensile strain of Ge
Raman/%XRD/%
100.640.260.42
201.350.910.93
302.071.781.84
402.792.352.31
Tab.1  Biaxial tensile strain inside Ge with different InGaAs buffer layers as measured by Raman and XRD
Fig.3  Low temperature (5 K) PL of different tensile strained Ge layers
Fig.4  1 μm × 1 μm AFM image of Ge QDs on InGaAs buffer layer
Fig.5  SEM image of Ge QD on InGaAs buffer layer
Fig.6  Raman for Ge QD with and without InGaAs capping layer
1 Fischetti M V, Laux S E. Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys. Journal of Applied Physics , 1996, 80(4): 2234-2252
doi: 10.1063/1.363052
2 Bai Y, Lee K E, Cheng C, Lee M L, Fitzgerald E A. Growth of highly tensile-strained Ge on relaxed InxGa1-xAs by metal-organic chemical vapor deposition. Journal of Applied Physics , 2008, 104(8): 084518
doi: 10.1063/1.3005886
3 Liu J, Cannon D D, Wada K, Ishikawa Y, Jongthammanurak S, Danielson D T, Michel J, Kimerling L C. Silicidation-induced band gap shrinkage in Ge epitaxial films on Si. Applied Physics Letters , 2004, 84(5): 660-662
4 Kurdi E M, Bertin H, Martincic E, Kersauson M, Fishman G, Sauvage S, Bosseboeuf A, Boucaud P. Control of direct band gap emission of bulk germanium by mechanical tensile strain. Applied Physics Letters , 2010, 96(4): 041909
doi: 10.1063/1.3297883
5 Takeuchi S, Sakai A, Nakatsuka O, Ogawa M, Zaima S. Tensile strained Ge layers on strain-relaxed Ge1-xSnx/virtual Ge substrates. Thin Solid Films , 2008, 517(1): 159-162
doi: 10.1016/j.tsf.2008.08.068
6 Nataraj L, Xu F, Cloutier S G. Direct-bandgap luminescence at room-temperature from highly-strained germanium nanocrystals. Optics Express , 2010, 18(7): 7085-7091
doi: 10.1364/OE.18.007085 pmid:20389729
7 Lin H, Huo Y J, Rong Y W, Chen R, Kamins T I, Harris J S. X-ray diffraction analysis of step-graded InxGa1-xAs buffer layers grown by MBE. Journal of Crystal Growth , 2011, 323(1): 17-20
doi: 10.1016/j.jcrysgro.2010.11.173
8 Sun X C, Liu J F, Kimerling L C, Michel J. Direct gap photoluminescence of n-type tensile-strained Ge-on-Si. Applied Physics Letters , 2009, 95(1): 011911
doi: 10.1063/1.3170870
[1] Jianfeng GAO, Junqiang SUN, Heng ZHOU, Jialin JIANG, Yang ZHOU. Design and fabrication of compact Ge-on-SOI coupling structure[J]. Front. Optoelectron., 2019, 12(3): 276-285.
[2] Yanxiong E,Zhibiao HAO,Jiadong YU,Chao WU,Lai WANG,Bing XIONG,Jian WANG,Yanjun HAN,Changzheng SUN,Yi LUO. Size-dependent optical properties of InGaN quantum dots in GaN nanowires grown by MBE[J]. Front. Optoelectron., 2016, 9(2): 318-322.
[3] E. KASPER, M. OEHME, J. WERNER, T. AGUIROV, M. KITTLER. Direct band gap luminescence from Ge on Si pin diodes[J]. Front Optoelec, 2012, 5(3): 256-260.
[4] Zhongwei SHI, Lirong HUANG, Yi YU, Peng TIAN, Hanchao WANG. Influence of V/III ratio on QD size distribution[J]. Front Optoelec Chin, 2011, 4(4): 364-368.
[5] Caixia SONG, Yuwei SUN, Yaohua XU, Debao WANG. Synthesis and optical property of ZnO nano-/micro-rods[J]. Front Optoelec Chin, 2011, 4(2): 156-160.
[6] Pijus Kanti SAMANTA, Partha Roy CHAUDHURI. Substrate effect on morphology and photoluminescence from ZnO monopods and bipods[J]. Front Optoelec Chin, 2011, 4(2): 130-136.
[7] Jieying KONG, Bin LIU, Rong ZHANG, Zili XIE, Yong ZHANG, Xiangqian XIU, Youdou ZHENG. Optical properties of InN films grown by MOCVD[J]. Front Optoelec Chin, 2008, 1(3-4): 341-344.
[8] JIA Guozhi, YAO Jianghong, SHU Yongchun, WANG Zhanguo. Optical properties and structure of InAs quantum dots in near-infrared band[J]. Front. Optoelectron., 2008, 1(1-2): 134-137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed