Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec    2012, Vol. 5 Issue (1) : 68-72    https://doi.org/10.1007/s12200-012-0195-8
RESEARCH ARTICLE
Energy intensity analysis of modes in hybrid plasmonic waveguide
Ruixi ZENG1,2, Yuan ZHANG1(), Sailing HE1,2
1. Centre for Optical and Electromagnetic Research, State Key Laboratory of Modern Optical Instrumentations, Zhejiang University, Hangzhou 310058, China; 2. Joint Research Center of Photonics of Zhejiang University and South China Normal University, South China Normal University, Guangzhou 510006, China
 Download: PDF(222 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A hybrid plasmonic waveguide containing silicon core, silver cap and ultra-thin sandwiched SiO2 layer is studied. By analyzing the mode distribution patterns and the curves of mode effective index, we show how the plasmonic mode around the metal surface is coupled with the fundamental mode in the silicon core to form a squeezed hybrid mode. The ability of the hybrid plasmonic waveguide in energy confinement is also discussed quantitatively.

Keywords plasmonic      hybrid plasmonic waveguide      energy intensity      integration density     
Corresponding Author(s): ZHANG Yuan,Email:zhydxx@zju.edu.cn   
Issue Date: 05 March 2012
 Cite this article:   
Ruixi ZENG,Yuan ZHANG,Sailing HE. Energy intensity analysis of modes in hybrid plasmonic waveguide[J]. Front Optoelec, 2012, 5(1): 68-72.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-012-0195-8
https://academic.hep.com.cn/foe/EN/Y2012/V5/I1/68
Fig.1  Cross section of the two hybrid plasmonic waveguides studied in this paper
Fig.2  Real part (a) and imaginary part (b) of effective index of the two types of designs in Fig. 1 as the width of the silicon core increases. Blue square curves and red triangle curves are for structures in Figs. 1(a) and 1(b), respectively
Fig.3  Energy flux density distributions of hybrid plasmonic mode for structure of Fig. 1(a) when silicon width is (a) 100 nm; (b) 200 nm; and (c) 400 nm. Black curve at the left of each pattern is the distribution along the cross section (dashed lines); (d) illustration showing plasmonic mode and dielectric mode couple to form a hybrid plasmonic waveguide mode
Fig.4  Real part (blue curve) and imaginary part (red curve) of effective index as the width of metal cap increases when the width of silicon core is fixed to (a) 400 nm; and (b) 200 nm ( = 250 nm, = 20 nm; = 100 nm)
Fig.5  Confinement factor (red triangle curve) and the ratio of energy stored in SiO to that in Si core (blue square curve) as increases from 100 to 400 nm
1 Ozbay E. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science , 2006, 311(5758): 189–193
doi: 10.1126/science.1114849 pmid:16410515
2 Zia R, Schuller J A, Chandran A, Brongersma M L. Plasmonics: the next chip-scale technology. Materials Today , 2006, 9(7-8): 20–27
doi: 10.1016/S1369-7021(06)71572-3
3 Tanaka K, Tanaka M. Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide. Applied Physics Letters , 2003, 82(8): 1158–1160
doi: 10.1063/1.1557323
4 Kusunoki F, Yotsuya T, Takahara J, Kobayashi T. Propagation properties of guided waves in index-guided two-dimensional optical waveguides. Applied Physics Letters , 2005, 86(21): 211101
doi: 10.1063/1.1935034
5 Pile D F P, Gramotnev D K. Plasmonic subwavelength waveguides: next to zero losses at sharp bends. Optics Letters , 2005, 30(10): 1186–1188
doi: 10.1364/OL.30.001186 pmid:15943304
6 Liu L, Han Z H, He S. Novel surface plasmon waveguide for high integration. Optics Express , 2005, 13(17): 6645–6650
doi: 10.1364/OPEX.13.006645 pmid:19498679
7 Veronis G, Fan S H. Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides. Applied Physics Letters , 2005, 87(13): 131102
doi: 10.1063/1.2056594
8 Pile D F P, Gramotnev D K. Channel plasmon-polariton in a triangular groove on a metal surface. Optics Letters , 2004, 29(10): 1069–1071
doi: 10.1364/OL.29.001069 pmid:15181988
9 Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y, Ebbesen T W. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature , 2006, 440(7083): 508–511
doi: 10.1038/nature04594 pmid:16554814
10 Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nature Photonics , 2008, 2(8): 496–500
doi: 10.1038/nphoton.2008.131
11 Fujii M, Leuthold J, Freude W. Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides. IEEE Photonics Technology Letters , 2009, 21(6): 362–364
doi: 10.1109/LPT.2008.2011995
12 Dai D X, Yang L, He S L. Ultrasmall thermally tunable microring resonator with a submicrometer heater on Si nanowires. Journal of Lightwave Technology , 2008, 26(6): 704–709
doi: 10.1109/JLT.2007.915274
13 Alam M Z, Meier J, Aitchison J S, Mojahedi M. Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends. Optics Express , 2010, 18(12): 12971–12979
doi: 10.1364/OE.18.012971 pmid:20588426
14 Dai D X, He S L. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Optics Express , 2009, 17(19): 16646–16653
doi: 10.1364/OE.17.016646 pmid:19770880
15 Dai D X, Shi Y C, He S L, Wosinski L, Thylen L. Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium. Optics Express , 2011, 19(14): 12925–12936
doi: 10.1364/OE.19.012925 pmid:21747445
16 Ordal M A, Bell R J, Alexander R W Jr, Long L L, Querry M R. Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. Applied Optics , 1985, 24(24): 4493–4499
doi: 10.1364/AO.24.004493 pmid:18224235
[1] Haoran MU, Zeke LIU, Xiaozhi BAO, Zhichen WAN, Guanyu LIU, Xiangping LI, Huaiyu SHAO, Guichuan XING, Babar SHABBIR, Lei LI, Tian SUN, Shaojuan LI, Wanli MA, Qiaoliang BAO. Highly stable and repeatable femtosecond soliton pulse generation from saturable absorbers based on two-dimensional Cu3−xP nanocrystals[J]. Front. Optoelectron., 2020, 13(2): 139-148.
[2] Yinan ZHANG,Min GU. Plasmonic light trapping for wavelength-scale silicon solar absorbers[J]. Front. Optoelectron., 2016, 9(2): 277-282.
[3] Xiangang LUO. Subwavelength electromagnetics[J]. Front. Optoelectron., 2016, 9(2): 138-150.
[4] Jian WANG. A review of recent progress in plasmon-assisted nanophotonic devices[J]. Front. Optoelectron., 2014, 7(3): 320-337.
[5] Xiaowei GUAN,Hao WU,Daoxin DAI. Silicon hybrid nanoplasmonics for ultra-dense photonic integration[J]. Front. Optoelectron., 2014, 7(3): 300-319.
[6] Xinwan LI, Zehua HONG, Xiaomeng SUN. Photonic nano-device for optical signal processing[J]. Front Optoelec Chin, 2011, 4(3): 254-263.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed