|
|
|
Energy intensity analysis of modes in hybrid plasmonic waveguide |
Ruixi ZENG1,2, Yuan ZHANG1( ), Sailing HE1,2 |
| 1. Centre for Optical and Electromagnetic Research, State Key Laboratory of Modern Optical Instrumentations, Zhejiang University, Hangzhou 310058, China; 2. Joint Research Center of Photonics of Zhejiang University and South China Normal University, South China Normal University, Guangzhou 510006, China |
|
|
|
|
Abstract A hybrid plasmonic waveguide containing silicon core, silver cap and ultra-thin sandwiched SiO2 layer is studied. By analyzing the mode distribution patterns and the curves of mode effective index, we show how the plasmonic mode around the metal surface is coupled with the fundamental mode in the silicon core to form a squeezed hybrid mode. The ability of the hybrid plasmonic waveguide in energy confinement is also discussed quantitatively.
|
| Keywords
plasmonic
hybrid plasmonic waveguide
energy intensity
integration density
|
|
Corresponding Author(s):
ZHANG Yuan,Email:zhydxx@zju.edu.cn
|
|
Issue Date: 05 March 2012
|
|
| 1 |
Ozbay E. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science , 2006, 311(5758): 189–193 doi: 10.1126/science.1114849 pmid:16410515
|
| 2 |
Zia R, Schuller J A, Chandran A, Brongersma M L. Plasmonics: the next chip-scale technology. Materials Today , 2006, 9(7-8): 20–27 doi: 10.1016/S1369-7021(06)71572-3
|
| 3 |
Tanaka K, Tanaka M. Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide. Applied Physics Letters , 2003, 82(8): 1158–1160 doi: 10.1063/1.1557323
|
| 4 |
Kusunoki F, Yotsuya T, Takahara J, Kobayashi T. Propagation properties of guided waves in index-guided two-dimensional optical waveguides. Applied Physics Letters , 2005, 86(21): 211101 doi: 10.1063/1.1935034
|
| 5 |
Pile D F P, Gramotnev D K. Plasmonic subwavelength waveguides: next to zero losses at sharp bends. Optics Letters , 2005, 30(10): 1186–1188 doi: 10.1364/OL.30.001186 pmid:15943304
|
| 6 |
Liu L, Han Z H, He S. Novel surface plasmon waveguide for high integration. Optics Express , 2005, 13(17): 6645–6650 doi: 10.1364/OPEX.13.006645 pmid:19498679
|
| 7 |
Veronis G, Fan S H. Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides. Applied Physics Letters , 2005, 87(13): 131102 doi: 10.1063/1.2056594
|
| 8 |
Pile D F P, Gramotnev D K. Channel plasmon-polariton in a triangular groove on a metal surface. Optics Letters , 2004, 29(10): 1069–1071 doi: 10.1364/OL.29.001069 pmid:15181988
|
| 9 |
Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y, Ebbesen T W. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature , 2006, 440(7083): 508–511 doi: 10.1038/nature04594 pmid:16554814
|
| 10 |
Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nature Photonics , 2008, 2(8): 496–500 doi: 10.1038/nphoton.2008.131
|
| 11 |
Fujii M, Leuthold J, Freude W. Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides. IEEE Photonics Technology Letters , 2009, 21(6): 362–364 doi: 10.1109/LPT.2008.2011995
|
| 12 |
Dai D X, Yang L, He S L. Ultrasmall thermally tunable microring resonator with a submicrometer heater on Si nanowires. Journal of Lightwave Technology , 2008, 26(6): 704–709 doi: 10.1109/JLT.2007.915274
|
| 13 |
Alam M Z, Meier J, Aitchison J S, Mojahedi M. Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends. Optics Express , 2010, 18(12): 12971–12979 doi: 10.1364/OE.18.012971 pmid:20588426
|
| 14 |
Dai D X, He S L. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Optics Express , 2009, 17(19): 16646–16653 doi: 10.1364/OE.17.016646 pmid:19770880
|
| 15 |
Dai D X, Shi Y C, He S L, Wosinski L, Thylen L. Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium. Optics Express , 2011, 19(14): 12925–12936 doi: 10.1364/OE.19.012925 pmid:21747445
|
| 16 |
Ordal M A, Bell R J, Alexander R W Jr, Long L L, Querry M R. Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. Applied Optics , 1985, 24(24): 4493–4499 doi: 10.1364/AO.24.004493 pmid:18224235
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|