Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec    2012, Vol. 5 Issue (1) : 90-93    https://doi.org/10.1007/s12200-012-0197-6
RESEARCH ARTICLE
Improved extinction ratio of Mach-Zehnder based optical modulators on CMOS platform
Zhiyong LI(), Liang ZHOU, Xi XIAO, Tao CHU, Yude YU, Jinzhong YU
State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors (IS), Chinese Academy of Sciences (CAS), Beijing 100083, China
 Download: PDF(235 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Silicon based optical modulators with improved extinction ratio (ER) of 25 dB were demonstrated on complementary metal oxide semiconductor (CMOS) platform. It was proposed that the effect of optical absorption due to free carriers accumulated in silicon should be considered in the analysis of device configuration. Experimental results presented in this study were identical with the proposed analyses. The modulators were operated with the data transmission rate of 3.2 Gbps.

Keywords silicon photonics      optical modulator      extinction ratio (ER)      integration     
Corresponding Author(s): LI Zhiyong,Email:lizhy@semi.ac.cn   
Issue Date: 05 March 2012
 Cite this article:   
Zhiyong LI,Liang ZHOU,Jinzhong YU, et al. Improved extinction ratio of Mach-Zehnder based optical modulators on CMOS platform[J]. Front Optoelec, 2012, 5(1): 90-93.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-012-0197-6
https://academic.hep.com.cn/foe/EN/Y2012/V5/I1/90
Fig.1  Microscope image of MZ modulator fabricated in CMOS foundry
Fig.2  Optical spectra for undoped and boron doped asymmetric MZs in silicon
Fig.3  SEM images. (a) Rib optical waveguide; (b) grating coupler for light in and out vertically
Fig.4  Optical spectra of asymmetric MZ modulator biased at the forward voltages from 0 to 1.8 V
Fig.5  - curve of PN diode for integrated active components
Fig.6  Measured modulator response at the transmission rate of 3.2 Gbps
1 Tsybeskov L, Lockwood D J, Ichikawa M. Silicon photonics: CMOS going optical. Proceedings of the IEEE , 2009, 97(7): 1161–1165
doi: 10.1109/JPROC.2009.2021052
2 Soref R A. The past, present, and future of silicon photonics. IEEE Journal on Selected Topics in Quantum Electronics , 2006, 12(6): 1678–1687
doi: 10.1109/JSTQE.2006.883151
3 Li Z Y, Xu D X, McKinnon W R, Janz S, Schmid J H, Cheben P, Yu J Z. Silicon waveguide modulator based on carrier depletion in periodically interleaved PN junctions. Optics Express , 2009, 17(18): 15947–15958
doi: 10.1364/OE.17.015947 pmid:19724593
4 Zhu Y, Xu X J, Li Z Y, Zhou L, Han W H, Fan Z C, Yu Y D, Yu J Z. High efficiency and broad bandwidth grating coupler between nanophotonic waveguide and fiber. Chinese Physics B , 2010, 19(1): 64–68
5 Zhou H F, Zhao Y, Wang W J, Yang J, Wang M H, Jiang X Q. Performance influence of carrier absorption to the Mach-Zehnder-interference based silicon optical switches. Optics Express , 2009, 17(9): 7043–7051
doi: 10.1364/OE.17.007043 pmid:19399079
[1] Saket KAUSHAL, Rui Cheng, Minglei Ma, Ajay Mistry, Maurizio Burla, Lukas Chrostowski, José Azaña. Optical signal processing based on silicon photonics waveguide Bragg gratings: review[J]. Front. Optoelectron., 2018, 11(2): 163-188.
[2] Yong ZHANG, Yu HE, Qingming ZHU, Xinhong JIANG, Xuhan Guo, Ciyuan QIU, Yikai SU. On-chip silicon polarization and mode handling devices[J]. Front. Optoelectron., 2018, 11(1): 77-91.
[3] Mengying HE,Shasha LIAO,Li LIU,Jianji DONG. Theoretical analysis for optomechanical all-optical transistor[J]. Front. Optoelectron., 2016, 9(3): 406-411.
[4] Xuelin YANG,Weisheng HU. Principle and applications of semiconductor optical amplifiers-based turbo-switches[J]. Front. Optoelectron., 2016, 9(3): 346-352.
[5] Xinlun CAI,Michael STRAIN,Siyuan YU,Marc SOREL. Photonic integrated devices for exploiting the orbital angular momentum of light in optical communications[J]. Front. Optoelectron., 2016, 9(3): 518-525.
[6] Daoxin DAI,Shipeng WANG. Asymmetric directional couplers based on silicon nanophotonic waveguides and applications[J]. Front. Optoelectron., 2016, 9(3): 450-465.
[7] Ran HAO,Jiamin JIN,Xinchang WEI,Xiaofeng JIN,Xianmin ZHANG,Erping LI. Recent developments in graphene-based optical modulators[J]. Front. Optoelectron., 2014, 7(3): 277-292.
[8] Charles CAER,Xavier LE ROUX,Samuel SERNA,Weiwei ZHANG,Laurent VIVIEN,Eric CASSAN. Large group-index bandwidth product empty core slow light photonic crystal waveguides for hybrid silicon photonics[J]. Front. Optoelectron., 2014, 7(3): 376-384.
[9] Xiaowei GUAN,Hao WU,Daoxin DAI. Silicon hybrid nanoplasmonics for ultra-dense photonic integration[J]. Front. Optoelectron., 2014, 7(3): 300-319.
[10] Qing WAN, Chunhui HUANG. A novel Stokes parameters coding scheme for free-space coherent optical communication[J]. Front Optoelec, 2012, 5(2): 231-236.
[11] Sei-Min KIM, Seon-Ho JANG, Ja-Soon JANG. High-performance and current crowding-free InGaN-GaN-based LEDs integrated by an electrically-reverse-connected Schottky diode and a Mg-delta doped p-GaN[J]. Front Optoelec, 2012, 5(2): 127-132.
[12] Yiwen RONG, Yijie HUO, Edward T. FEI, Marco FIORENTINO, Michael R.T. TAN, Tomasz OCHALSKI, Guillaume HUYET, Lars THYLEN, Marek CHACINSKI, Theodore I. KAMINS, James S. HARRIS. High speed optical modulation in Ge quantum wells using quantum confined stark effect[J]. Front Optoelec, 2012, 5(1): 82-89.
[13] Weixuan HU, Buwen CHENG, Chunlai XUE, Shaojian SU, Haiyun XUE, Yuhua ZUO, Qiming WANG. Ge-on-Si for Si-based integrated materials and photonic devices[J]. Front Optoelec, 2012, 5(1): 41-50.
[14] Guangzhao RAN, Hongqiang LI, Chong WANG. On-chip silicon light source: from photonics to plasmonics[J]. Front Optoelec, 2012, 5(1): 3-6.
[15] Ruixi ZENG, Yuan ZHANG, Sailing HE. Energy intensity analysis of modes in hybrid plasmonic waveguide[J]. Front Optoelec, 2012, 5(1): 68-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed