Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec    2012, Vol. 5 Issue (1) : 41-50    https://doi.org/10.1007/s12200-012-0200-2
REVIEW ARTICLE
Ge-on-Si for Si-based integrated materials and photonic devices
Weixuan HU, Buwen CHENG(), Chunlai XUE, Shaojian SU, Haiyun XUE, Yuhua ZUO, Qiming WANG
State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
 Download: PDF(715 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper reviews the recent progress in photonic devices application of Ge-on-Si. Ge-on-Si materials and optical devices are suitable candidates for Si-based optoelectronic integration because of the mature epitaxial technique and the compatibility with Si complementary metal-oxide-semiconductor (CMOS) technology. Recently, the realities of electric-pump Ge light emitting diode (LED) and optical-pump pulse Ge laser, Ge quantum well modulator based on quantum Stark confined effect, waveguide Ge modulator based on Franz-Keldysh (FK) effect, and high performance near-infrared Ge detector, rendered the Si-based optoelectronic integration using Ge photonic devices. Ge-on-Si material is also an important platform to grow other materials on it for Si-based optoelectronic integration. InGaAs and GeSn have been grown on the Ge-on-Si. InGaAs LED and GeSn photodetector have been successfully fabricated as well.

Keywords optoelectronic integration      Ge      photonic device     
Corresponding Author(s): CHENG Buwen,Email:cbw@semi.ac.cn   
Issue Date: 05 March 2012
 Cite this article:   
Weixuan HU,Buwen CHENG,Chunlai XUE, et al. Ge-on-Si for Si-based integrated materials and photonic devices[J]. Front Optoelec, 2012, 5(1): 41-50.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-012-0200-2
https://academic.hep.com.cn/foe/EN/Y2012/V5/I1/41
Fig.1  EL spectra of the device. The bias was ranging from 1.1 to 2.5 V. The peak shift curve is also shown in the figure
Fig.2  Ge absorption coefficient spectra under external electric field of 12.5 and 62.5 KV/cm
Fig.3  Photocurrent spectrum of Ge quantum well modulator (with 10 pairs of 10 nm Ge wells and 18 nm SiGe barriers) with reverse bias from (a) 0 to 1.5 V and (b) 1.5 to 3.0 V
Fig.4  Schematic cross-section view of double mesa structure of Ge p-i-n photodetector
active Ge thickness/μmR at 1550 nm/(A·W-1)Jdark/(mA·cm-2)3 dB BWyear
3.80.7515 (-1V)~2.5 GHz2002 [21]
2.350.5211 (-1V)2005 [22]
1.30.2~200 (-1V)10 Gbit/s2006 [23]
0.30.04100 (-1V)~43 GHz2007 [24]
0.60.18.65 (-1V)-2009 [25]
0.60.243.98 (-1V)6.28 GHz2009 [26]
0.80.3114.8(-1V)12.6GHz2010 [20]
Tab.1  Performance comparison for different normal-incidence Ge photodetector designs
device structureRat 1.55 μm/(A·W-1)Idark/μA3dB BWyear
butt, MSM1±0.213025 at -6V2007 [29]
top, PIN0.870.97.22007 [30]
bottom, PIN0.890.17 at -2V31.3 at -2V2007 [27]
butt, PIN1.11.3322009 [28]
Tab.2  Performance comparison for different waveguide Ge photodetector designs
Fig.5  Schematic cross-section view of Ge/Si SACM APD
Fig.6  - characteristics at darkness and with illumination by 1310 nm light of 30 μm-diameter detector for different illuminate optical power
Fig.7  Measured multiplication gain as a function of bias at a wavelength of 1310 nm. The primary photoresponsivity used to obtain gain is 0.50 A/W measured from Ge p-i-n devices fabricated with the same Ge thickness
Fig.8  Cross section TEM images of InGaAs on (a) 300nm, (b) 550 nm and (c) 1020 nm Ge/offcut Si(001) virtual substrate. The GaAs islands on InGaAs/Ge interface are indicated by dash circles. The solid arrows show the TD reduction in Ge/offcut Si. In inset (d), the EDS along the black line through a GaAs island is shown.
Fig.9  Schematic cross-section view of InGaAs LED
Fig.10  Room temperature EL spectra of InGaAs/Ge/offcut Si LED
Fig.11  (a) X-ray transmission electron microscope (XTEM) image of the GeSn alloy; the inset is the selected area electron diffraction pattern taken from the GeSn layer; (b) high resolution TEM micrograph of the GeSn/Ge interface
Fig.12  Schematic cross-section view of GeSn detector on Si
Fig.13  Responsivity versus wavelength at -1 V along with photocurrent spectrum of a 100 μm diameter GeSn detector. The responsivities were measured using lasers while the photocurrent spectrum was measured at 0 V using a Fourier transform infrared spectrometer
1 Jones R,Park H,Fang A W,Bowers J E,Cohen O,Raday O,Paniccia M J.Hybrid silicon integration.Journal of Materials Science Materials in Electronics ,2009,20(S1):3-9
doi: 10.1007/s10854-007-9418-y
2 Boyraz O,Jalali B.Demonstration of a silicon Raman laser. Optics Express ,2004,12(21):5269-5273
doi: 10.1364/OPEX.12.005269 pmid:19484086
3 Rong H,Jones R,Liu A,Cohen O,Hak D,Fang A,Paniccia M.A continuous-wave Raman silicon laser. Nature ,2005,433(7027):725-728
doi: 10.1038/nature03346 pmid:15716948
4 Soref R,Bennett B.Electrooptical effects in silicon.IEEE Journal of Quantum Electronics ,1987,23(1):123-129
doi: 10.1109/JQE.1987.1073206
5 Halbwax M,Bouchier D,Yam V,Débarre D,Nguyen L H,Zheng Y,Rosner P,Benamara M,Strunk H P,Clerc C.Kinetics of Ge growth at low temperature on Si(001) by ultrahigh vacuum chemical vapor deposition.Journal of Applied Physics ,2005,97(6):064907
6 Liu J,Sun X,Pan D,Wang X,Kimerling L C,Koch T L,Michel J.Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si. Optics Express ,2007,15(18):11272-11277
doi: 10.1364/OE.15.011272 pmid:19547484
7 Chris G.Van de Walle. Band lineups and deformation potentials in the model-solid theory. Physical Review B: Condensed Matter and Materials Physics ,1989,39(3):1871-1883
doi: 10.1103/PhysRevB.39.1871
8 Cheng T H,Peng K L,Ko C Y,Chen C Y,Lan H,Wu Y R,Liu C W,Tseng H H.Strain-enhanced photoluminescence from Ge direct transition.Applied Physics Letters ,2010,96(21):211108
doi: 10.1063/1.3429085
9 Sun X,Liu J,Kimerling L C,Michel J.Direct gap photoluminescence of n-type tensile-strained Ge-on-Si.Applied Physics Letters ,2009,95(1):011911
doi: 10.1063/1.3170870
10 Hu W,Cheng B,Xue C,Xue H,Su S,Bai A,Luo L,Yu Y,Wang Q.Electroluminescence from Ge on Si substrate at room temperature.Applied Physics Letters ,2009,95(9):092102
doi: 10.1063/1.3216577
11 Sun X,Liu J,Kimerling L C,Michel J.Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes. Optics Letters ,2009,34(8):1198-1200
doi: 10.1364/OL.34.001198 pmid:19370116
12 Cheng S L,Lu J,Shambat G,Yu H Y,Saraswat K,Vuckovic J,Nishi Y.Room temperature 1.6 μm electroluminescence from Ge light emitting diode on Si substrate. Optics Express ,2009,17(12):10019-10024
doi: 10.1364/OE.17.010019 pmid:19506652
13 Liu J,Sun X,Camacho-Aguilera R,Kimerling L C,Michel J.Ge-on-Si laser operating at room temperature. Optics Letters ,2010,35(5):679-681
doi: 10.1364/OL.35.000679 pmid:20195317
14 Liu J,Beals M,Pomerene A,Bernardis S,Sun R,Cheng J,Kimerling L C,Michel J.Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators.Nature Photonics ,2008,2(7):433-437
doi: 10.1038/nphoton.2008.99
15 Feng N N,Feng D,Liao S,Wang X,Dong P,Liang H,Kung C C,Qian W,Fong J,Shafiiha R,Luo Y,Cunningham J,Krishnamoorthy A V,Asghari M.30 GHz Ge electro-absorption modulator integrated with 3 μm silicon-on-insulator waveguide. Optics Express ,2011,19(8):7062-7067
doi: 10.1364/OE.19.007062 pmid:21503018
16 Kuo Y H,Lee Y K,Ge Y,Ren S,Roth J E,Kamins T I,Miller D A B,Harris J S.Strong quantum-confined Stark effect in germanium quantum-well structures on silicon. Nature ,2005,437(7063):1334-1336
doi: 10.1038/nature04204 pmid:16251959
17 Zhao H W,Hu W X,Xue C L,Cheng B W,Wang Q M.Design of waveguide integrated Ge-quantum-well electro-absorption modulators.Chinese Physics Letters ,2011,28(1):014204
doi: 10.1088/0256-307X/28/1/014204
18 Chaisakul P,Marris-Morini D,Isella G,Chrastina D,Le Roux X,Gatti E,Edmond S,Osmond J,Cassan E,Vivien L.Quantum-confined Stark effect measurements in Ge/SiGe quantum-well structures. Optics Letters ,2010,35(17):2913-2915
doi: 10.1364/OL.35.002913 pmid:20808367
19 Rong Y W,Ge Y S,Huo Y J,Fiorentino M,Michael R T T,Theodore I K,Tomasz J O,Guillaume H,James S H Jr.Quantum-confined Stark effect in Ge/SiGe quantum wells on Si.IEEE Journal of Selected Topics Quantum Electronics ,2010,16(1):85-92
20 Mei X,Kabehie S,βStieg A Z,Tkatchouk E,Benitez D,Goddard W A,Zink J I,Wang K L.A molecular-rotor device for nonvolatile high-density memory applications.IEEE Electron Device Letters ,2010,31(9):1047-1049
doi: 10.1109/LED.2010.2052018
21 Famà S,Colace L,Masini G,Assanto G,Luan H C.High performance germanium-on-silicon detectors for optical communications.Applied Physics Letters ,2002,81(4):586-588
doi: 10.1063/1.1496492
22 Liu J F,Michel J,Giziewicz W,Pan D,Wada K,Cannon D D,Jongthammanurak S,Danielson D T,Kimerling L C,Chen J,?mer Ilday F,Kartner F X,Yasaitis J.High-performance, tensile-strained Ge p-i-n photodetectors on a Si platform.Applied Physics Letters ,2005,87(10):103501-103502
23 Colace L,Balbi M,Masini G,Assanto G,Luan H C,Kimerling L C.Ge on Si p-i-n photodiodes operating at 10 Gbit∕s.Applied Physics Letters ,2006,88(10):101111
doi: 10.1063/1.2182110
24 Oehme M,Werner J,Kasper E,Klinger S,Berroth M.Photocurrent analysis of a fast Ge p-i-n detector on Si.Applied Physics Letters ,2007,91(5):051108
doi: 10.1063/1.2757599
25 Park S B,Takita S Y,Ishikawa Y,Osaka J,Wada K.Reverse current reduction of Ge photodiodes on Si without post-growth anneling.Chinese Optics Letters ,2009,7(4):286-290
26 Xue H Y,Xue C L,Cheng B W,Yu Y D,Wang Q M.Zero biased Ge-on-Si photodetector with a bandwidth of 4.72 GHz at 1550 nm.Chinese Physics B ,2009,18(6):2542
doi: 10.1088/1674-1056/18/6/070
27 Yin T,Cohen R,Morse M M,Sarid G,Chetrit Y,Rubin D,Paniccia M J.31 GHz Ge n-i-p waveguide photodetectors on silicon-on-insulator substrate. Optics Express ,2007,15(21):13965-13971
doi: 10.1364/OE.15.013965 pmid:19550670
28 Feng D Z,Liao S R,Dong P,Feng N N,Liang H,Zheng D W,Kung C C,Fong J,Shafiiha R,Cunningham J,Krishnamoorthy A V,Asghari M.High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide.Applied Physics Letters ,2009,95(26):261105-261107
doi: 10.1063/1.3279129
29 Vivien L,Rouvière M,Fédéli J M,Marris-Morini D,Damlencourt J F,Mangeney J,Crozat P,El Melhaoui L,Cassan E,Le Roux X,Pascal D,Laval S.High speed and high responsivity germanium photodetector integrated in a silicon-on-insulator microwaveguide. Optics Express ,2007,15(15):9843-9848
doi: 10.1364/OE.15.009843 pmid:19547334
30 Ahn D,Hong C Y,Liu J F,Giziewicz W,Beals M,Kimerling L C,Michel J,Chen J,K?rtner F X.High performance, waveguide integrated Ge photodetectors. Optics Express ,2007,15(7):3916-3921
doi: 10.1364/OE.15.003916 pmid:19532633
31 Kang Y M,Liu H D,Morse M,Paniccia M J,Zadka M,Litski S,Sarid G,Pauchard A,Kuo Y H,Chen H W,Zaoui W S,Bowers J E,Beling A,McIntosh D C,Zheng X G,Campbell J C.Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product.Nature Photonics ,2009,3(1):59-63
doi: 10.1038/nphoton.2008.247
32 Xue C,Xue H,Cheng B,Bai A,Hu W,Yu Y,Wang Q. In:6th IEEE International Conference on Group IV Photonics .2009,178
33 Bolkhovityanov Y B,Pchelyakov O P.GaAs epitaxy on Si substrates: modern status of research and engineering.Physics-Uspekhi ,2008,51(5):437-456
doi: 10.1070/PU2008v051n05ABEH006529
34 Beeler R,Mathews J, eWeng C,Tolle J,Roucka R,Chizmeshya A V G,Juday R,Bagchi S,Menéndez JKouvetakis J.Comparative study of InGaAs integration on bulk Ge and virtual Ge/Si(1 0 0) substrates for low-cost photovoltaic applications.Solar Energy Materials and Solar Cells .2010,94(12):2362-2370
35 D’Costa V R,Cook C S,Birdwell A G,Littler C L,Canonico M,Zollner S,Kouvetakis J,Menéndez J.Optical critical points of thin-film Ge1-ySny alloys: a comparative Ge1-ySny∕Ge1-xSix study.Physics Review B ,2006,73(12):125207-125222
36 Bauer M,Taraci J,Tolle J,Chizmeshya A V G,Zollner S,Smith D J,Menendez J,Hu. C W,Kouvetakis J.Ge-Sn semiconductors for band-gap and lattice engineering.Applied Physics Letters ,2002,81(16):2992-2994
37 Su S,Wang W,Cheng B,Zhang G,Hu W,Xue C,Zuo Y,Wang Q.Epitaxial growth and thermal stability of Ge1-xSnx alloys on Ge-buffered Si(001) substrates.Journal of Crystal Growth ,2011,317(1):43-46
doi: 10.1016/j.jcrysgro.2011.01.015
38 Su S,Cheng B,Xue C,Wang W,Cao Q,Xue H,Hu W,Zhang G,Zuo Y,Wang Q.GeSn p-i-n photodetector for all telecommunication bands detection. Optics Express ,2011,19(7):6400-6405
doi: 10.1364/OE.19.006400 pmid:21451667
39 Mathews J,Roucka R,Xie J,Yu S Q,Menendez J,Kouvetakis J.Extended performance GeSn/Si(100) p-i-n photodetectors for full spectral range telecommunication applications.Applied Physics Letters ,2009,95(13):133506-133508
doi: 10.1063/1.3238327
[1] Xiazi HUANG, Yingying ZHOU, Chi Man WOO, Yue PAN, Liming NIE, Puxiang LAI. Multifunctional layered black phosphorene-based nanoplatform for disease diagnosis and treatment: a review[J]. Front. Optoelectron., 2020, 13(4): 327-351.
[2] Yulia S. MAKLYGINA, Alexei S. SKOBELTSIN, Tatiana A. SAVELIEVA, Galina V. PAVLOVA, Ivan V. CHEKHONIN, Olga I. GURINA, Anastasiya A. Chernysheva, Sergey A. Cherepanov, Victor B. LOSCHENOV. Study of possibility of cell recognition in brain tumors[J]. Front. Optoelectron., 2020, 13(4): 371-380.
[3] Haoran MU, Zeke LIU, Xiaozhi BAO, Zhichen WAN, Guanyu LIU, Xiangping LI, Huaiyu SHAO, Guichuan XING, Babar SHABBIR, Lei LI, Tian SUN, Shaojuan LI, Wanli MA, Qiaoliang BAO. Highly stable and repeatable femtosecond soliton pulse generation from saturable absorbers based on two-dimensional Cu3−xP nanocrystals[J]. Front. Optoelectron., 2020, 13(2): 139-148.
[4] Harpreet KAUR, Munish RATTAN. Improved offline multi-objective routing and wavelength assignment in optical networks[J]. Front. Optoelectron., 2019, 12(4): 433-444.
[5] Chao PENG, Danhua CAO, Yubin WU, Qun YANG. Robot visual guide with Fourier-Mellin based visual tracking[J]. Front. Optoelectron., 2019, 12(4): 413-421.
[6] Fatah ALMABOUADA, Manuel Adler ABREU, João M. P. COELHO, Kamal Eddine AIADI. Experimental and simulation assessments of underwater light propagation[J]. Front. Optoelectron., 2019, 12(4): 405-412.
[7] Etu PODDER, Md. Bellal HOSSAIN, Rayhan Habib JIBON, Abdullah Al-Mamun BULBUL, Himadri Shekhar MONDAL. Chemical sensing through photonic crystal fiber: sulfuric acid detection[J]. Front. Optoelectron., 2019, 12(4): 372-381.
[8] Jinghui LI, Zhifang TAN, Manchen HU, Chao CHEN, Jiajun LUO, Shunran LI, Liang GAO, Zewen XIAO, Guangda NIU, Jiang TANG. Antimony doped Cs2SnCl6 with bright and stable emission[J]. Front. Optoelectron., 2019, 12(4): 352-364.
[9] Jun ZENG, Rong LIN, Xianlong LIU, Chengliang ZHAO, Yangjian CAI. Review on partially coherent vortex beams[J]. Front. Optoelectron., 2019, 12(3): 229-248.
[10] Briliant Adhi PRABOWO, I Dewa Putu HERMIDA, Robeth Viktoria MANURUNG, Agnes PURWIDYANTRI, Kou-Chen LIU. Nano-film aluminum-gold for ultra-high dynamic-range surface plasmon resonance chemical sensor[J]. Front. Optoelectron., 2019, 12(3): 286-295.
[11] Jiayu LI, Yijun XIE, Ping SUN. Edge detection on terahertz pulse imaging of dehydrated cutaneous malignant melanoma embedded in paraffin[J]. Front. Optoelectron., 2019, 12(3): 317-323.
[12] Jianfeng GAO, Junqiang SUN, Heng ZHOU, Jialin JIANG, Yang ZHOU. Design and fabrication of compact Ge-on-SOI coupling structure[J]. Front. Optoelectron., 2019, 12(3): 276-285.
[13] Xiaoli JING, Haobo CHENG, Yongfu WEN. Shape reconstruction of large optical surface with high-order terms in fringe reflection technique[J]. Front. Optoelectron., 2019, 12(2): 180-189.
[14] Kuanhong XU, Xiaonong ZHU, Peng HUANG, Zhiqiang Yu, Nan ZHANG. Origin of peculiar inerratic diffraction patterns recorded by charge-coupled device cameras[J]. Front. Optoelectron., 2019, 12(2): 174-179.
[15] Rekha SAHA, Md. Mahbub HOSSAIN, Md. Ekhlasur RAHAMAN, Himadri Shekhar MONDAL. Design and analysis of high birefringence and nonlinearity with small confinement loss photonic crystal fiber[J]. Front. Optoelectron., 2019, 12(2): 165-173.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed