Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec    2012, Vol. 5 Issue (2) : 195-199    https://doi.org/10.1007/s12200-012-0222-9
RESEARCH ARTICLE
40-Gbit/s 3-input all-optical priority encoder based on cross-gain modulation in two parallel semiconductor optical amplifiers
Yin ZHANG, Jianji DONG, Lei LEI, Hao HE, Xinliang ZHANG()
Wuhan National Laboratory for Optoelectronics, College of Optoelectronic Science and Engineering, Huazhong University of Science & Technology, Wuhan 430074, China
 Download: PDF(539 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A 3-input all-optical priority encoder is designed. Proof-of-concept experiment is performed at 40-Gbit/s based on a cross-gain modulation (XGM) in two parallel semiconductor optical amplifiers (SOAs). Output logic signals with over 10-dB extinction ratios (ERs) and clear open eye diagrams are obtained. No additional input light beam is used. The proposed scheme may be a promising candidate for future ultrafast all-optical digital signal processing circuits and computing systems.

Keywords optical computing      digital information processing      logic gates      cross-gain modulation (XGM)      semiconductor optical amplifier (SOA)     
Corresponding Author(s): ZHANG Xinliang,Email:xlzhang@mail.hust.edu.cn   
Issue Date: 05 June 2012
 Cite this article:   
Yin ZHANG,Jianji DONG,Lei LEI, et al. 40-Gbit/s 3-input all-optical priority encoder based on cross-gain modulation in two parallel semiconductor optical amplifiers[J]. Front Optoelec, 2012, 5(2): 195-199.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-012-0222-9
https://academic.hep.com.cn/foe/EN/Y2012/V5/I2/195
Fig.1  3-input digital priority encoder. (a) Block diagram; (b) logical truth table; (c) schematic diagram of 3-input all-optical digital priority encoder based on XGM in two parallel SOAs
Fig.2  Experimental setup of 3-input all-optical priority encoder based on XGM in two parallel SOAs
Fig.3  Temporal traces of original signals (A, B, and C) and output logic signals (, , Y, and Y)
Fig.4  Measured optical spectra of (a) input SOA, output SOA, and Y; (b) input SOA, output SOA, and Y
Fig.5  Measured ERs (left) and EOFs (right) of output logic signals (, , Y, and Y) at 2-1 PRBS. Insets: eye diagrams at the cases indicated
1 Cotter D, Manning R J, Blow K J, Ellis A D, Kelly A E, Nesset D, Phillips I D, Poustie A J, Rogers D C. Nonlinear optics for high-speed digital information processing. Science , 1999, 286(5444): 1523-1528
doi: 10.1126/science.286.5444.1523 pmid:10567251
2 Ma S, Sun H, Chen Z, Dutta N K. High speed all-optical PRBS generation based on quantum-dot semiconductor optical amplifiers. Optics Express , 2009, 17(21): 18469-18477
doi: 10.1364/OE.17.018469 pmid:20372577
3 Wang Y, Zhang X L, Dong J J, Huang D X. Simultaneous demonstration on all-optical digital encoder and comparator at 40 Gb/s with semiconductor optical amplifiers. Optics Express , 2007, 15(23): 15080-15085
doi: 10.1364/OE.15.015080 pmid:19550791
4 Durhuus T, Mikkelsen B, Joergensen C, Danielsen L S, Stubkjaer K E. All-optical wavelength conversion by semiconductor optical amplifiers. Journal of Lightwave Technology , 1996, 14(6): 942-954
doi: 10.1109/50.511594
5 Nielsen M L, Mork J. Increasing the modulation bandwidth of semiconductor- optical-amplifier-based switches by using optical filtering. Journal of the Optical Society of America B, Optical Physics , 2004, 21(9): 1606-1619
doi: 10.1364/JOSAB.21.001606
6 Dong J J, Zhang X L, Fu S N, Xu J, Shum P, Huang D. Ultrafast all-optical signal processing based on single semiconductor optical amplifier and optical filtering. IEEE Journal on Selected Topics in Quantum Electronics , 2008, 14(3): 770-778
doi: 10.1109/JSTQE.2008.916248
[1] Zhefeng HU, Jianhui XU, Min HOU. Theoretical demonstration of all-optical switchable and tunable UWB doublet pulse train generator utilizing SOA wavelength conversion and tunable time delay[J]. Front. Optoelectron., 2017, 10(2): 180-188.
[2] Michael J. CONNELLY,Lukasz KRZCZANOWICZ,Pascal MOREL,Ammar SHARAIHA,Francois LELARGE,Romain BRENOT,Siddharth JOSHI,Sophie BARBET. 40 Gb/s NRZ-DQPSK data wavelength conversion with amplitude regeneration using four-wave mixing in a quantum dash semiconductor optical amplifier[J]. Front. Optoelectron., 2016, 9(3): 341-345.
[3] Tong CAO,Xinliang ZHANG. Performance improvement by enhancing the well-barrier hole burning in a quantum well semiconductor optical amplifier[J]. Front. Optoelectron., 2016, 9(3): 353-361.
[4] Xuelin YANG,Weisheng HU. Principle and applications of semiconductor optical amplifiers-based turbo-switches[J]. Front. Optoelectron., 2016, 9(3): 346-352.
[5] Zhao WU,Yu YU,Xinliang ZHANG. Chromatic dispersion monitoring using semiconductor optical amplifier[J]. Front. Optoelectron., 2014, 7(3): 399-405.
[6] Li HUO, Qiang WANG, Yanfei XING, Caiyun LOU. Signal generation and processing at 100 Gb/s based on optical time division multiplexing[J]. Front Optoelec, 2013, 6(1): 57-66.
[7] Ehsan MOHADESRAD, Kambiz ABEDI. Proposal for modeling of tapered quantum-dot semiconductor optical amplifiers[J]. Front Optoelec, 2012, 5(4): 457-464.
[8] Hussein TALEB, Kambiz ABEDI. Homogeneous and inhomogeneous broadening effects on static and dynamic responses of quantum-dot semiconductor optical amplifiers[J]. Front Optoelec, 2012, 5(4): 445-456.
[9] Tan SHU, Yonglin YU, Hui LV, Dexiu Huang, Kai SHI, Liam BARRY. Influence of facet reflection of SOA on SOA-integrated SGDBR laser[J]. Front Optoelec, 2012, 5(4): 390-394.
[10] Jing HUANG, Deming LIU. WDM PON using 10-Gb/s DPSK downstream and re-modulated 10-Gb/s OOK upstream based on SOA[J]. Front Optoelec Chin, 2010, 3(4): 339-342.
[11] Zigang DUAN, Wei SHI, Yan LI, Guangyue CHAI. Gain properties and optical-feedback suppression of asymmetrical curved active waveguides[J]. Front Optoelec Chin, 2009, 2(4): 379-383.
[12] Yin ZHANG, Xinliang ZHANG, Xi HUANG, Cheng CHENG. Experimental investigation on slow light via four-wave mixing in semiconductor optical amplifier[J]. Front Optoelec Chin, 2009, 2(3): 259-263.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed