Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec    2012, Vol. 5 Issue (1) : 7-12    https://doi.org/10.1007/s12200-012-0226-5
REVIEW ARTICLE
Highly efficient silicon light emitting diodes produced by doping engineering
Jiaming SUN1(), M. HELM2, W. SKORUPA2, B. SCHMIDT2, A. MüCKLICH2
1. Key Laboratory of Weak Light Nonlinear Photonics Ministry of Education, Nankai University, Tianjin 300071, China; 2. Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden 01314, Germany
 Download: PDF(240 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper reviews our recent progress on silicon (Si) pn junction light emitting diodes with locally doping engineered carrier potentials. Boron implanted Si diodes with dislocation loops have electroluminescence (EL) quantum efficiency up to 0.12%, which is two orders of magnitude higher than those without dislocations. Boron gettering along the strained dislocation lines produces locally p-type spike doping at the dislocations, which have potential wells for bounding spatially indirect excitons. Thermal dissociation of the bound excitons releases free carriers, leading to an anomalous increase of the band to band luminescence with increasing temperature. Si light emitting diodes with external quantum efficiency of 0.2% have been also demonstrated by implementation of pnpn modulation doping arrays.

Keywords silicon (Si) light emitting diodes      doping engineering      dislocation      modulation doping     
Corresponding Author(s): SUN Jiaming,Email:jmsun@nankai.edu.cn   
Issue Date: 05 March 2012
 Cite this article:   
Jiaming SUN,M. HELM,W. SKORUPA, et al. Highly efficient silicon light emitting diodes produced by doping engineering[J]. Front Optoelec, 2012, 5(1): 7-12.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-012-0226-5
https://academic.hep.com.cn/foe/EN/Y2012/V5/I1/7
Fig.1  XTEM images of Si pn diodes prepared by B implantation at 25 keV with doses of (a) 4×10 cm and (b) 2.0×10 cm plus Si implantation at 50 keV with a dose of 1.5×10 cm
Fig.2  EL spectra at 12 K of Si pn diodes prepared by B implantation at 25 keV with different doses of 4.0×10 cm (A), and 2.0×10 cm (B). The reference sample (B*) are produced by B implantation with a small dose of 2.0×10 cm plus Si implantation at 50 keV with a dose of 1.5×10 cm for creation of dislocations
Fig.3  EL spectra at room temperature from Si pn diodes prepared by B implantation at 25 keV with different doses of 4.0×10 cm (A), and 2.0×10 cm (B). The reference sample (B*) produced by B implantation with a dose of 2.0×10 cm plus Si implantation at 50 keV with a dose of 1.5×10 cm
Fig.4  Dependences of energies of EL peaks from dislocations on logarithm of injection current density at 12 K. EL peaks and are from dislocations in pn diode (A) generated by high dose boron implantation; EL peaks D and P are from dislocations in the reference pn diode (B*) created by Si implantation
Fig.5  Energy band diagram and electronic transitions in Si pn diode with heavy p-type doping spikes (a); recombination of spatially indirect bound excitons related to EL peaks and at strained and unstrained dislocations in low and high current injection regimes (b)
Fig.6  Integrated EL intensity of FE (squares), (dots) and (uptrangles) as a function of temperature from diode implanted with B at 25 keV with a dose of 4×10 cm. Solid line: guide to the eyes; dotted and dashed lines: theoretical fitting to temperature dependences of and
Fig.7  Images of 0.5 m ×0.5 mm Si light emitting diode containing micro heavy p-doping arrays extended into n-type Si substrate. B ions are implanted into Si at 25 keV with a dose of 4×10 cm through micro holes on 150 nm SiO mask layer. Micro windows have an area of 2 μm×2 μm with a space of 4 μm
Fig.8  Dependences of room temperature EL intensity on injection current for two Si pn diodes with and without patterned doping fabricated on the same chip
1 Pavesi L. Will silicon be the photonic material of the third millenium? Journal of Physics: Condensed Matter , 2003, 15(26): R1169–R1196
doi: 10.1088/0953-8984/15/26/201
2 Ennen H, Schneider J, Pomrenke G, Axmann A. 1.54-μm luminescence of erbium-implanted III-V semiconductors and silicon. Applied Physics Letters , 1983, 43(10): 943–945
doi: 10.1063/1.94190
3 Michel J, Benton J L, Ferrante R F, Jacobson D C, Eaglesham D J, Fitzgerald E A, Xie Y H, Poate J M, Kimerling L C. Impurity enhancement of the 1.54-μm Er3+ luminescence in silicon. Journal of Applied Physics , 1991, 70(5): 2672–2678
doi: 10.1063/1.349382
4 Franzò G, Irrera A, Moreira E C, Miritello M, Iacona F, Sanfilippo D, Di Stefano G, Fallica P G, Priolo F. Electroluminescence of silicon nanocrystals in MOS structures. Applied Physics A: Materials Science & Processing , 2002, 74(1): 1–5
doi: 10.1007/s003390101019
5 Pavesi L, Dal Negro L, Mazzoleni C, Franzò G, Priolo F. Optical gain in silicon nanocrystals. Nature , 2000, 408(6811): 440–444
doi: 10.1038/35044012 pmid:11100719
6 Iacona F, Pacifici D, Irrera A, Miritello M, Franzò G, Priolo F, Sanfilippo D, Di Stefano G, Fallica P G.Electroluminescence at 1.54 μm in Er-doped Si nanoclustor-based devices. Applied Physics Letters , 2002, 81(17): 3242–3244
doi: 10.1063/1.1516235
7 Rebohle L, Gebel T, Von Borany J, Skorupa W, Helm M, Pacifici D, Franzò G, Priolo F. Transient behavior of the strong violet electroluminescence of Ge-implanted SiO2 layers. Applied Physics B, Lasers and Optics , 2002, 74(1): 53–56
doi: 10.1007/s003400100771
8 Sun J M, Skorupa W, Dekorsy T, Helm M. Efficient electroluminescence from rare-earth implanted SiO2 metal-oxide-semiconductor structures. In: 2nd IEEE International Conference on Group IV Photonics , 2005, 48–51
9 Ng W L, Louren?o M A, Gwilliam R M, Ledain S, Shao G, Homewood K P. An efficient room-temperature silicon-based light-emitting diode. Nature , 2001, 410(6825): 192–194
doi: 10.1038/35065571 pmid:11242075
10 Sun J M, Dekorsy T, Skorupa W, Schmidt B, Helm M. Origin of anomalous temperature dependence and high efficiency of silicon light-emitting diodes. Applied Physics Letters , 2003, 83(19): 3885–3887
doi: 10.1063/1.1626809
11 Sun J. M, Dekorsy T, Skorupa, W, Schmidt B, Mücklich A, Helm M. Below-band-gap electroluminescence related to doping spikes in boron-implanted silicon pn diodes. Physical Review B , 2004, 70(15): 155316(1-11)
12 Solmi S, Landi E, Baruffaldi F. High-concentration boron diffusion in silicon: Simulation of the precipitation phenomena. Journal of Applied Physics , 1990, 68(7): 3250–3258
doi: 10.1063/1.346376
13 Bonafos C, Claverie A, Alquier D, Bergaud C, Martinez A, Laanab L, Mathiot D. The effect of the boron doping level on the thermal behaviour of end-of-range defects in silicon. Applied Physics Letters , 1997, 71(3): 365–367
doi: 10.1063/1.119563
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed