Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec    2012, Vol. 5 Issue (2) : 187-194    https://doi.org/10.1007/s12200-012-0231-8
RESEARCH ARTICLE
Simplified adaptively modulated optical OFDM modems using subcarrier modulation with added input/output reconfigurability
Xing ZHENG, Jinlong WEI, Roger Philip GIDDINGS, Jianming TANG()
School of Electronic Engineering, Bangor University, Bangor, LL57 1UT, UK
 Download: PDF(255 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Three novel designs of adaptively modulated optical orthogonal frequency division multiplexing modems using subcarrier modulation (AMOOFDM-SCM) are proposed, for the first time, each of which requires a single inverse fast Fourier transform/fast Fourier transform (IFFT/FFT) operation. These designs not only significantly simplify the AMOOFDM-SCM modem configurations, but also offer extra unique network features such as input/output reconfigurability. Investigations show that these three modems are capable of supporting more than 60 Gb/s AMOOFDM-SCM signal transmission over 20, 40 and 60 km single mode fibre (SMF)-based intensity modulation and direct detection (IMDD) transmission links without optical amplification and chromatic dispersion compensation.

Keywords orthogonal frequency division multiplexing (OFDM)      subcarrier modulation (SCM)      single mode fibre (SMF)     
Corresponding Author(s): TANG Jianming,Email:j.tang@bangor.ac.uk   
Issue Date: 05 June 2012
 Cite this article:   
Xing ZHENG,Jinlong WEI,Roger Philip GIDDINGS, et al. Simplified adaptively modulated optical OFDM modems using subcarrier modulation with added input/output reconfigurability[J]. Front Optoelec, 2012, 5(2): 187-194.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-012-0231-8
https://academic.hep.com.cn/foe/EN/Y2012/V5/I2/187
Fig.1  Schematic illustration of RS III modem configuration and corresponding transmission link structure. Mod: modulation; IM: intensity modulator; Atten.: attenuator; PD: photodetector; DeMod: demodulation; FPGA: field programmable gate array; DAC/ADC: digital-to-analogue converter/analogue-to-digital converter; LPF: low-pass filter
Fig.2  Signal spectra of proposed RS modems. USB: upper sideband spectrum of SCM subcarrier; LSB: lower sideband spectrum of SCM subcarrier. (a) RS I; (b) RS II; (c) RS III
Fig.3  Illustration of generation of pure real-valued symbols and pure imaginary-valued symbols
Fig.4  Optimum SCM subcarrier frequencies for different modem designs. RS: reconfigurable modem; AS: conventional AMOOFDM-SCM scheme. (a) Transmission performance as function of for RS (AS) scheme II and III; (b) transmission performance as function of for RS (AS) scheme I, II and III
Fig.5  Signal transmission capacity versus reach performance of different modem designs. RS: reconfigurable modem; AS: AMOOFDM-SCM scheme
1 Tang J M,Shore K A. 30 Gb/s signal transmission over 40-km directly modulated DFB-laser-based single-mode-fiber links without optical amplification and dispersion compensation. Journal of Lightwave Technology , 2006, 24(6): 2318-2327
2 Shieh W, Bao H, Tang Y. Coherent optical OFDM: theory and design. Optics Express , 2008, 16(2): 841-859
doi: 10.1364/OE.16.000841 pmid:18542158
3 Schmidt B J C, Lowery A J, Armstrong J. Experimental demonstrations of electronic dispersion compensation for long-haul transmission using direct detection optical OFDM. Journal of Lightwave Technology , 2008, 26(1): 196-203
doi: 10.1109/JLT.2007.913017
4 Jin X Q, Tang J M, Spencer P S, Shore K A. Optimization of adaptively modulated optical OFDM modems for multimode fiber-based local area networks. Journal of Optical Networking , 2008, 7(3): 198-214
doi: 10.1364/JON.7.000198
5 Hui R, Zhu B, Huang R, Allen C, Demarest K, Richards D. 10 Gb/s SCM fiber system using optical SSB modulation. IEEE Photonics Technology Letters , 2001, 13(8): 896-898
doi: 10.1109/68.935840
6 Zheng X, Tang J M, Spencer P S. Transmission performance of adaptively modulated optical OFDM modems using subcarrier modulation over worst-case multimode fibre links. IEEE Communications Letters , 2008, 12(10): 788-790
doi: 10.1109/LCOMM.2008.080930
7 Zheng X, Wei J L, Tang J M. Transmission performance of adaptively modulated optical OFDM modems using subcarrier modulation over SMF IMDD links for access and metropolitan area networks. Optics Express , 2008, 16(25): 20427-20440
doi: 10.1364/OE.16.020427 pmid:19065181
8 Giddings R P, Jin X Q, Hugues-Salas E, Giacoumidis E, Wei J L, Tang J M. Experimental demonstration of a record high 11.25 Gb/s real-time optical OFDM transceiver supporting 25 km SMF end-to-end transmission in simple IMDD systems. Optics Express , 2010, 18(6): 5541-5555
doi: 10.1364/OE.18.005541 pmid:20389570
9 Jansen S L, Morita I, Schenk T C W, Takeda N, Tanaka H. Coherent optical 25.8 Gb/s OFDM transmission over 4160-km SSMF. Journal of Lightwave Technology , 2008, 26(1): 6-15
doi: 10.1109/JLT.2007.911888
10 Carlson A B, Crilly P B, Rutledge J C. Communication Systems: An Introduction to Signals and Noise in Electrical Communication. 4th ed . New York: McGraw-Hill, Higher Education, 2002
11 Wei J L, Hamie A, Giddings R P, Tang J M. Semiconductor optical amplifier-enabled intensity modulation of adaptively modulated optical OFDM signals in SMF-based IMDD systems. Journal of Lightwave Technology , 2009, 27(16): 3678-3688
doi: 10.1109/JLT.2009.2021164
12 Peng W R, Zhang B, Wu X X, Feng K M, Willner A E, Chi S. Compensation for I/Q imbalances and bias deviation of the Mach-Zehnder modulators in direct-detected optical OFDM systems. IEEE Photonics Technology Letters , 2009, 21(2): 103-105
doi: 10.1109/LPT.2008.2008819
13 Wei J L, Yang X L, Giddings R P, Tang J M. Colourless adaptively modulated optical OFDM transmitters using SOA as intensity modulators. Optics Express , 2009, 17(11): 9012-9027
14 Choi S I, Huh J D. Dynamic bandwidth allocation algorithm for multimedia services over Ethernet PONs. ETRI Journal , 2002, 24(6): 465-468
doi: 10.4218/etrij.02.0202.0002
15 Lee J H, Choi K M, Moon J H, Lee C H. Seamless upgrades from a TDM-PON with a video overlay to a WDM-PON. Journal of Lightwave Technology , 2009, 27(15): 3116-3123
doi: 10.1109/JLT.2008.2006861
16 Tang J M, Lane P M, Shore K A. High-speed transmission of adaptively modulated optical OFDM signals over multimode fibres using directly modulated DFBs. Journal of Lightwave Technology , 2006, 24(1): 429-441
doi: 10.1109/JLT.2005.860146
17 Giacoumidis E, Wei J L, Jin X Q, Tang J M. Improved transmission performance of adaptively modulated optical OFDM signals over directly modulated DFB laser-based IMDD links using adaptive cyclic prefix. Optics Express , 2008, 16(13): 9480-9494
doi: 10.1364/OE.16.009480 pmid:18575513
18 Tang J M, Shore K A. Maximizing the transmission performance of adaptively modulated optical OFDM signals in multimode-fiber links by optimizing analog-to-digital converters. Journal of Lightwave Technology , 2007, 25(3): 787-798
doi: 10.1109/JLT.2006.890457
[1] Lavish KANSAL, Vishal SHARMA, Jagjit Singh MALHOTRA. MIMO-WiMAX system incorporated with diverse transformation for 5G applications[J]. Front. Optoelectron., 2019, 12(3): 296-310.
[2] Jianping LI, Zhaohui LI. Vector mode based optical direct detection orthogonal frequency division multiplexing transmission in short-reach optical link[J]. Front. Optoelectron., 2019, 12(1): 41-51.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed