Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec    2012, Vol. 5 Issue (2) : 157-170    https://doi.org/10.1007/s12200-012-0237-2
REVIEW ARTICLE
Vertical-external-cavity surface-emitting lasers and quantum dot lasers
Guangcun SHAN1,2(), Xinghai ZHAO1,3, Mingjun HU2, Chan-Hung SHEK2, Wei HUANG4
1. State Key Laboratory of Functional Materials for Informatics, Chinese Academy of Sciences, Shanghai 200050, China; 2. Department of Physics and Materials Science, City University of Hong Kong, Hong Kong, China; 3. Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang 621900, China; 4. Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210046, China
 Download: PDF(380 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The use of cavity to manipulate photon emission of quantum dots (QDs) has been opening unprecedented opportunities for realizing quantum functional nanophotonic devices and quantum information devices. In particular, in the field of semiconductor lasers, QDs were introduced as a superior alternative to quantum wells (QWs) to suppress the temperature dependence of the threshold current in vertical-external-cavity surface-emitting lasers (VECSELs). In this work, a review of properties and development of semiconductor VECSEL devices and QD laser devices is given. Based on the features of VECSEL devices, the main emphasis is put on the recent development of technological approach on semiconductor QD VECSELs. Then, from the viewpoint of both single QD nanolaser and cavity quantum electrodynamics (QED), a single-QD-cavity system resulting from the strong coupling of QD cavity is presented. In this review, we will cover both fundamental aspects and technological approaches of QD VECSEL devices. Lastly, the presented review here has provided deep insight into useful guideline for the development of QD VECSEL technology, future quantum functional nanophotonic devices and monolithic photonic integrated circuits (MPhICs).

Keywords vertical-external-cavity surface-emitting lasers (VECSELs)      quantum dot (QD)      QD laser      quantum electrodynamics (QED)      cavity QED     
Corresponding Author(s): SHAN Guangcun,Email:guangcunshan@mail.sim.ac.cn   
Issue Date: 05 June 2012
 Cite this article:   
Guangcun SHAN,Xinghai ZHAO,Mingjun HU, et al. Vertical-external-cavity surface-emitting lasers and quantum dot lasers[J]. Front Optoelec, 2012, 5(2): 157-170.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-012-0237-2
https://academic.hep.com.cn/foe/EN/Y2012/V5/I2/157
Fig.1  Schematic structure of semiconductor edge-emitting laser (a) and surface-emitting laser (b)
Fig.2  Schematic structure configration of VECSEL device (a) and QD VECSEL device (b)
Fig.3  Schematic illustration of quantum effects (density of states) from bulk, QW, quantum wire to QD
Fig.4  Schematic structure (a) and corresponding working mechanism (b) of single QD microdisk nanolaser, in which an atomic QD in a small-volume microdisk cavity with dephasing rate coupled to a cavity with photon loss rate by coupling strength . (c) Schematic illustration of the QD-PhC-nanocavity system considered, in which a single QD embedded in a PhC nanocavity
1 Michler P, Kiraz A, Becher C, Schoenfeld W V, Petroff P M, Zhang L, Hu E, Imamoglu A. A quantum dot single-photon turnstile device. Science , 2000, 290(5500): 2282–2285
doi: 10.1126/science.290.5500.2282 pmid:11125136
2 Fonoberov V A, Balandin A A. ZnO quantum dots: physical properties and optoelectronic applications. Journal of Nanoelectronics and Optoelectronics , 2006, 1(1): 19–38
3 Kumano H, Kimura S, Endo M, Sasakura H, Adachi S, Muto S, Suemune I. Deterministic single-photon and polarization-correlated photon pair generations from a single InAlAs quantum dot. Journal of Nanoelectronics and Optoelectronics , 2006, 1(1): 39–51
4 Gerard J M, Gayral B. InAs quantum dots: artificial atoms for solid-state cavity-quantum electrodynamics. Physica E, Low-Dimensional Systems and Nanostructures , 2001, 9(1): 131–139
doi: 10.1016/S1386-9477(00)00187-9
5 Fathpour S, Mi Z, Bhattacharya P. High-speed quantum dot lasers. Journal of Physics D , 2005, 38(13): 2103–2111
doi: 10.1088/0022-3727/38/13/005
6 Okhotnikov O G. Seminconductor Disk Laser. Berlin: Wiley-VCH Verlag, 2010
7 Vallaitis T, Koos C, Bonk R, Freude W, Laemmlin M, Meuer C, Bimberg D, Leuthold J. Slow and fast dynamics of gain and phase in a quantum dot semiconductor optical amplifier. Optics Express , 2008, 16(1): 170–178
doi: 10.1364/OE.16.000170 pmid:18521145
8 Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. Journal of the American Chemical Society , 1993, 115(19): 8706–8715
doi: 10.1021/ja00072a025
9 He Y, Lu H T, Sai L M, Lai W Y, Fan Q L, Wang L H, Huang W. Synthesis of CdTe nanocrystals through program process of microwave irradiation. Journal of Physical Chemistry B , 2006, 110(27): 13352–13356
doi: 10.1021/jp061719h
10 Shan G, Bao S, Shek C H, Huang W. Theoretical study of fluorescence resonant energy transfer dynamics in individual semiconductor nanocrystal-DNA-dye conjugates. Journal of Luminescence , 2012, 132(6): 1472–1476
doi: 10.1016/j.jlumin.2012.01.024
11 Kuznetsov M, Hakimi F, Sprague R, Mooradian A. Design and characteristics of high-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams. IEEE Journal on Selected Topics in Quantum Electronics , 1999, 5(3): 561–573
doi: 10.1109/2944.788419
12 Rantam?ki A, Sirbu A, Mereuta A, Kapon E, Okhotnikov O G. 3 W of 650 nm red emission by frequency doubling of wafer-fused semiconductor disk laser. Optics Express , 2010, 18(21): 21645–21650
doi: 10.1364/OE.18.021645 pmid:20941063
13 Albrecht A R, Hains C P, Rotter T J, Stintz A, Malloy K J, Balakrishnan G, Moloney J V. High power 1.25 μm InAs quantum dot vertical external-cavity surface-emitting laser. Journal of Vacuum Science & Technology B , 2011, 9(3): 03C113
14 Coldren L A, Corzine S W. Diode Lasers and Photonic Integrated Circuits. New York: John Wiley & Sons, 1995
15 Li H, Iga K. Vertical-Cavity Surface-Emitting Laser Devices. Berlin: Springer, 2002
16 Diehl R. High Power Diode Lasers. Berlin: Springer, 2000
17 Lutgen S, Albrecht T, Brick P, Reill W, Luft J, Sp?th W. 8-W high-efficiency continuous-wave semiconductor disk laser at 1000 nm. Applied Physics Letters , 2003, 82(21): 3620
doi: 10.1063/1.1579137
18 Kapon E. Semiconductor Lasers II: Materials and Structures. New York: Academic Press, 1999
19 Chilla J, Shu Q Z, Zhou H, Weiss E, Reed M, Spinelli L. Recent advances in optically pumped semiconductor lasers. In: Proceedings of the Society for Photo-Instrumentation Engineers , 2007, 6451: 645109
20 Keller U, Tropper A C. Passively modelocked surface-emitting semiconductor lasers. Physics Reports , 2006, 429(2): 67–120
doi: 10.1016/j.physrep.2006.03.004
21 Saarinen E J, H?rk?nen A, Suomalainen S, Okhotnikov O G. Power scalable semiconductor disk laser using multiple gain cavity. Optics Express , 2006, 14(26): 12868–12871
doi: 10.1364/OE.14.012868 pmid:19532179
22 Fan L, Fallahi M, Hader J, Zakharian A R, Moloney J V, Murray J T, Bedford R, Stolz W, Koch S W. Multichip vertical-external-cavity surface-emitting lasers: a coherent power scaling scheme. Optics Letters , 2006, 31(24): 3612–3614
doi: 10.1364/OL.31.003612 pmid:17130920
23 Fan L, Fallahi M, Zakharian A, Hader J, Moloney J V, Bedford R, Murray J T, Stolz W, Koch S W. Extended tunability in a two-chip VECSEL. IEEE Photonics Technology Letters , 2007, 19(8): 544–546
doi: 10.1109/LPT.2007.893898
24 Rautiainen J, H?rk?nen A, Korpij?rvi V M, Tuomisto P, Guina M, Okhotnikov O G. 2.7 W tunable orange-red GaInNAs semiconductor disk laser. Optics Express , 2007, 15(26): 18345–18350
doi: 10.1364/OE.15.018345 pmid:19551132
25 Hilbich S, Seelert W, Ostroumov V, Kannengiesser C, Elm R v, Mueller J, Weiss E, Zhou H, Chilla J. New wavelengths in the yellow orange range between 545 nm and 580 nm generated by an intracavity frequency-doubled optically pumped semiconductor laser. Proceedings of SPIE , 2007, 6451: 64510C
26 Fallahi M, Fan L, Kaneda Y, Hessenius C, Hader J, Li H, Moloney J V, Kunert B, Stolz W, Koch S W, Murray J, Bedford R. 5-W yellow laser by intracavity frequency doubling of high-power vertical-external-cavity surface-emitting laser. IEEE Photonics Technology Letters , 2008, 20(20): 1700–1702
doi: 10.1109/LPT.2008.2003413
27 Giet S, Sun H D, Calvez S, Dawson M D, Suomalainen S, Harkonen A, Guina M, Okhotnikov O, Pesa M. Spectral narrowing and locking of a vertical-external-cavity surface-emitting laser using an intracavity volume Bragg grating. IEEE Photonics Technology Letters , 2006, 18(16): 1786–1788
doi: 10.1109/LPT.2006.880735
28 Giet S, Lee C L, Calvez S, Dawson M D, Destouches N, Pommier J C, Parriaux O. Stabilization of a semiconductor disk laser using an intra-cavity high reflectivity grating. Optics Express , 2007, 15(25): 16520–16526
doi: 10.1364/OE.15.016520 pmid:19550942
29 Fan L, Fallahi M, Murray J T, Bedford R, Kaneda Y, Zakharian A R, Hader J, Moloney J V, Stolz W, Koch S W. Tunable high-power high-brightness linearly polarized vertical-external-cavity surface-emitting lasers. Applied Physics Letters , 2006, 88(2): 021105
doi: 10.1063/1.2164921
30 Lorenser D, Maas D, Unold H J, Bellancourt A R, Rudin B, Gini E, Ebling D, Keller U. 50-GHz passively mode-locked surface-emitting semiconductor laser with 100-mW average output power. IEEE Journal of Quantum Electronics , 2006, 42(8): 838–847
doi: 10.1109/JQE.2006.878183
31 Haring R, Paschotta R, Aschwanden A, Gini E, Morier-Genoud F, Keller U. High-power passively mode-locked semiconductor lasers. IEEE Journal of Quantum Electronics , 2002, 38(9): 1268–1275
doi: 10.1109/JQE.2002.802111
32 Alford W J, Raymond T D, Allerman A A. High power and good beam quality at 980 nm from a vertical external-cavity surface-emitting laser. Journal of the Optical Society of America B: Optical Physics , 2002, 19(4): 663–666
doi: 10.1364/JOSAB.19.000663
33 Hastie J E, Hopkins J M, Calvez S, Jeon C W, Burns D, Abram R, Riis E, Ferguson A I, Dawson M D. 0.5-W single transverse-mode operation of an 850-nm diode-pumped surface-emitting semiconductor laser. IEEE Photonics Technology Letters , 2003, 15(7): 894–896
doi: 10.1109/LPT.2003.813446
34 Hastie J E, Morton L G, Calvez S, Dawson M D, Leinonen T, Pessa M, Gibson G, Padgett M J. Red microchip VECSEL array. Optics Express , 2005, 13(18): 7209–7214
doi: 10.1364/OPEX.13.007209 pmid:19498743
35 Kemp A J, Maclean A J, Hastie J E, Smith S A, Hopkins J M, Calvez S, Valentine G J, Dawson M D, Burns D. Thermal lensing, thermal management and transverse mode control in microchip VECSELs. Applied Physics B: Lasers and Optics , 2006, 83(2): 189–194
doi: 10.1007/s00340-006-2151-z
36 Garnache A, Kachanov A A, Stoeckel F, Planel R. High-sensitivity intracavity laser absorption spectroscopy with vertical-external-cavity surface-emitting semiconductor lasers. Optics Letters , 1999, 24(12): 826–828
doi: 10.1364/OL.24.000826 pmid:18073867
37 Zhao X H, Zhao X, Shan G C, Gao Y. Fiber-coupled laser-driven flyer plates system. Review of Scientific Instruments , 2011, 82(4): 043904
doi: 10.1063/1.3581220 pmid:21529022
38 Dingle R, Henry C H. Quantum effects in heterostructure lasers. US Patent, 3 982 207, 1976
39 Shan G C, Bao S Y. Theoretical study of a quantum dot microcavity laser. Proceedings of the SPIE , 2007, 6279: 627925
40 Bimberg D, Kirstaedter N, Ledentsov N N, Alferov Zh I, Kopev P S, Ustinov V M. InGaAs-GaAs quantum-dot lasers. IEEE Journal on Selected Topics in Quantum Electronics , 1997, 3(2): 196–205
doi: 10.1109/2944.605656
41 Asada M, Miyamoto Y, Suematsu Y. Gain and the threshold of three-dimensional quantum-box lasers. IEEE Journal of Quantum Electronics , 1986, QE-22(9): 1915–1921
doi: 10.1109/JQE.1986.1073149
42 Kirstaedter N, Schmidt O G, Ledentsov N N, Bimberg D, Ustinov V M, Egorov A Yu, Zhukov A E, Maximov M V, Kopev P S, Alferov Zh I. Gain and differential gain of single layer InAs/GaAs quantum dot injection lasers. Applied Physics Letters , 1996, 69(9): 1226
doi: 10.1063/1.117419
43 Jiang H, Singh J. Nonequilibrium distribution in quantum dots lasers and influence on laser spectral output. Journal of Applied Physics , 1999, 85(10): 7438
doi: 10.1063/1.369375
44 Leonard D, Pond K, Petroff P M. Critical layer thickness for self-assembled InAs islands on GaAs. Physical Review B: Condensed Matter and Materials Physics , 1994, 50(16): 11687–11692
doi: 10.1103/PhysRevB.50.11687
45 Bester G, Wu X, Vanderbilt D, Zunger A. Importance of second-order piezoelectric effects in zinc-blende semiconductors. Physical Review Letters , 2006, 96(18): 187602
doi: 10.1103/PhysRevLett.96.187602 pmid:16712396
46 Schliwa A, Winkelnkemper M, Bimberg D. Impact of size, shape, and composition on piezoelectric effects and electronic properties of In(Ga)As∕GaAs quantum dots. Physical Review B: Condensed Matter and Materials Physics , 2007, 76(20): 205324
doi: 10.1103/PhysRevB.76.205324
47 Schliwa A, Winkelnkemper M, Bimberg D. Few-particle energies versus geometry and composition of InxGa1-xAs/GaAs self-organized quantum dots. Physical Review B: Condensed Matter and Materials Physics , 2009, 79(7): 075443
doi: 10.1103/PhysRevB.79.075443
49 Blokhin S A, Maleev N A, Kuzmenkov A G, Sakharov A V, Kulagina M M, Shernyakov Yu M, Novikov I I, Maximov M V, Ustinov V M, Kovsh A R, Mikhrin S S, Ledentsov N N, Lin G, Chi J Y. Vertical-cavity surface-emitting lasers based on submonolayer InGaAs quantum dots. IEEE Journal of Quantum Electronics , 2006, 42(9): 851–858
doi: 10.1109/JQE.2006.880125
50 Mutig A, Fiol G, Moser P, Arsenijevic D, Shchukin V A, Ledentsov N N, Mikhrin S S, Krestnikov I L, Livshits D L, Kovsh A R, Hopfer F, Bimberg D. 120°C 20 Gbit/s operation of 980 nm VCSEL. Electronics Letters , 2008, 44(22): 1305–1306
doi: 10.1049/el:20082006
51 Sellin R L, Kaiander I, Ouyang D, Kettler T, Pohl U W, Bimberg D, Zakharov N D, Werner P. Alternative-precursor metalorganic chemical vapor deposition of self-organized InGaAs/GaAs quantum dots and quantum-dot lasers. Applied Physics Letters , 2003, 82(6): 841
doi: 10.1063/1.1544641
52 Sellers I R, Liu H Y, Groom K M, Childs D T, Robbins D, Badcock T J, Hopkinson M, Mowbray D J, Skolnick M S. 1.3 μm InAs∕GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density. Electronics Letters , 2004, 40(22): 1412–1413
doi: 10.1049/el:20046692
53 Xu Z, Birkedal D, Juhl M, Hvam J. Submonolayer InGaAs∕GaAs quantum-dot lasers with high modal gain and zero-linewidth enhancement factor. Applied Physics Letters , 2004, 85(15): 3259
doi: 10.1063/1.1806564
54 Mikhrin S S, Zhukov A E, Kovsh A R, Maleev N A, Ustinov V M, Shernyakov Yu M, Soshnikov I P, Livshits D L, Tarasov I S, Bedarev D A, Volovik B V, Maximov V M, Tsatsulnikov A F, Ledentsov N N, Kopev P S, Bimberg D, Alferov Zh I. 0.94 μm diode lasers based on Stranski-Krastanow and sub-monolayer quantum dots. Semiconductor Science and Technology , 2000, 15(11): 1061–1064
doi: 10.1088/0268-1242/15/11/309
55 Vahala K J. Quantum box fabrication tolerance and size limits in semiconductors and their effect on optical gain. IEEE Journal of Quantum Electronics , 1988, 24(3): 523–530
doi: 10.1109/3.157
56 Kirstaedter N, Ledentsov N N, Grundmann M, Bimberg D, Ustinov V M, Ruvimov S S, Maximov M V, Kopev P S, Alferov Zh I, Richter U, Werner P, Gosele U, Heydenreich J. Low threshold, large T0 injection laser emission from (InGa)As quantum dots. Electronics Letters , 1994, 30(17): 1416–1417
doi: 10.1049/el:19940939
57 Marko I P, Andreev A D, Adams A R, Krebs R, Reithmeier J, Forchel A. Importance of Auger recombination in InAs 1.3 μm quantum dot lasers. Electronics Letters , 2003, 39(1): 58
doi: 10.1049/el:20030014
58 Shchekin O B, Deppe D G. Low-threshold high-T0/1.3-μm InAs quantum-dot lasers due to p-type modulation doping of the active region. IEEE Photonics Technology Letters , 2002, 14(9): 1231–1233
doi: 10.1109/LPT.2002.801597
59 Heinrichsdorff F, Mao M H, Kirstaedter N, Krost A, Bimberg D, Kosogov A O, Werner P. Room-temperature continuous-wave lasing from stacked InAs/GaAs quantum dots grown by metalorganic chemical vapor deposition. Applied Physics Letters , 1997, 71(1): 22
doi: 10.1063/1.120556
60 Maximov M V, Kochnev I V, Shernyakov Y M, Zaitsev S V, Gordeev N Yu, Tsatsulnikov A F, Sakharov A V, Krestnikov I L, Kopev P S, Alferov Zh I, Ledentsov N N, Bimberg D, Kosogov A O, Werner P, G?sele U. InGaAs/GaAs quantum dot lasers with ultrahigh characteristic temperature (T0 = 385 K ) grown by metal organic chemical vapour deposition. Japanese Journal of Applied Physics , 1997, 36(Part 1, No. 6B): 4221–4223
doi: 10.1143/JJAP.36.4221
61 Sellin R L, Heinrichsdorff F, Ribbat Ch, Grundmann M, Pohl U W, Bimberg D. Surface flattening during MOCVD of thin GaAs layers covering InGaAs quantum dots. Journal of Crystal Growth , 2000, 221(1–4): 581–585
doi: 10.1016/S0022-0248(00)00782-X
62 Ribbat Ch, Sellin R L, Kaiander I, Hopfer F, Ledentsov N N, Bimberg D, Kovsh A R, Ustinov V M, Zhukov A E, Maximov M V. Complete suppression of filamentation and superior beam quality in quantum-dot lasers. Applied Physics Letters , 2003, 82(6): 952
doi: 10.1063/1.1533841
63 Ouyang D, Ledentsov N N, Bognar S, Hopfer F, Sellin R L, Kaiander I, Bimberg D. Impact of the mesa etching profiles on the spectral hole burning effects in quantum dot lasers. Semiconductor Science and Technology , 2004, 19(5): L43–L47
doi: 10.1088/0268-1242/19/5/L01
64 Strittmatter A, Germann T D, Kettler Th, Posilovic K, Pohl U W, Bimberg D. Alternative precursor metal-organic chemical vapor deposition of InGaAs∕GaAs quantum dot laser diodes with ultralow threshold at 1.25 μm. Applied Physics Letters , 2006, 88(26): 262104
doi: 10.1063/1.2218059
65 Guimard D, Ishida M, Hatori N, Nakata Y, Sudo H, Yamamoto T, Sugawara M, Arakawa Y. CW lasing at 1.35 μm from ten InAs–Sb: GaAs quantum-dot layers grown by metal-organic chemical vapor deposition. IEEE Photonics Technology Letters , 2008, 20(10): 827–829
doi: 10.1109/LPT.2008.921831
66 Kaminow I, Li T Y, Willner A. Optical Fiber Telecommunications V A. 5th ed. Components and Subsystems, Elsevier , 2008
67 Konttinen J, Harkonen A, Tuomisto P, Guina M, Rautiainen J, Pessa M, Okhotnikov O. High-power (>1 W) dilute nitride semiconductor disk laser emitting at 1240 nm. New Journal of Physics , 2007, 9(5): 140
doi: 10.1088/1367-2630/9/5/140
68 Lita B, Goldman R S, Philips J D, Bhattacharya P K. Nanometer-scale studies of vertical organization and evolution of stacked self-assembled InAs/GaAs quantum dots. Applied Physics Letters , 1999, 74(19): 2824
doi: 10.1063/1.124026
69 Heinrichsdorff F, Grundmann M, Stier O, Krost A, Bimberg D. Influence of In/Ga intermixing on the optical properties of InGaAs/GaAs quantum dots. Journal of Crystal Growth , 1998, 195(1–4): 540–545
doi: 10.1016/S0022-0248(98)00698-8
70 Lagatsy A A, Bain F M, Brown C T A, Sibbett W, Livshits D A, Erbert G, Rafailov E U. Low-loss quantum-dot-based saturable absorber for efficient femtosecond pulse generation. Applied Physics Letters , 2007, 91: 231111
doi: 10.1063/1.2817755
71 Strittmatter A, Germann T D, Pohl J, Pohl U W, Bimberg D, Rautiainen J, Guina M, Okhotnikov O G. 1040 nm vertical external cavity surface emitting laser based on InGaAs quantum dots grown in Stranski-Krastanow regime. Electronics Letters , 2008, 44(4): 290–291
doi: 10.1049/el:20083131
72 Germann T D, Strittmatter A, Pohl J, Pohl U W, Bimberg D, Rautiainen J, Guina M, Okhotnikov O G. Temperature-stable operation of a quantum dot semiconductor disk laser. Applied Physics Letters , 2008, 93(5): 051104
doi: 10.1063/1.2968137
73 Germann T D, Strittmatter A, Pohl J, Pohl U W, Bimberg D, Rautiainen J, Guina M, Okhotnikov O G. High-power semiconductor disk laser based on InAs∕GaAs submonolayer quantum dots. Applied Physics Letters , 2008, 92(10): 101123
doi: 10.1063/1.2898165
74 Lenz A, Eisele H, Timm R, Hennig Ch, Becker S K, Sellin R L, Pohl U W, Bimberg D, Dahne M. Nanovoids in InGaAs∕GaAs quantum dots observed by cross-sectional scanning tunneling microscopy. Applied Physics Letters , 2004, 85(17): 3848
doi: 10.1063/1.1808884
75 Germann T D, Strittmatter A, Pohl U W, Bimberg D, Rautiainen J, Guina M, Okhotnikov O G. Quantum-dot semiconductor disk lasers. Journal of Crystal Growth , 2008, 310(23): 5182–5186
doi: 10.1016/j.jcrysgro.2008.07.004
76 Germann T D, Strittmatter A, Kettler T, Posilovic K, Pohl U W, Bimberg D. MOCVD of InGaAs/GaAs quantum dots for lasers emitting close to 1.3 μm. Journal of Crystal Growth , 2007, 298: 591–594
doi: 10.1016/j.jcrysgro.2006.10.081
77 Pelton M, Yamamoto Y. Ultralow threshold laser using a single quantum dot and a microsphere cavity. Physical Review A , 1999, 59(3): 2418–2421
doi: 10.1103/PhysRevA.59.2418
78 Strauf S, Jahnke F. Single quantum dot nanolaser. Laser Photonics Reviews , 2011, 5(5): 607–633
79 Strauf S, Hennessy K, Rakher M T, Choi Y S, Badolato A, Andreani L C, Hu E L, Petroff P M, Bouwmeester D. Self-tuned quantum dot gain in photonic crystal lasers. Physical Review Letters , 2006, 96(12): 127404
doi: 10.1103/PhysRevLett.96.127404 pmid:16605958
80 Pelton M, Santori C, Vuckovi? J, Zhang B, Solomon G S, Plant J, Yamamoto Y. Efficient source of single photons: a single quantum dot in a micropost microcavity. Physical Review Letters , 2002, 89(23): 233602
doi: 10.1103/PhysRevLett.89.233602 pmid:12485008
81 Song B S, Noda S, Asano T, Akahane Y. Ultra-high-Q photonic double-heterostructure nanocavity. Nature Materials , 2004, 4(3): 207–210
doi: 10.1038/nmat1320
82 Lodahl P, Floris Van Driel A, Nikolaev I S, Irman A, Overgaag K, Vanmaekelbergh D, Vos W L. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature , 2004, 430(7000): 654–657
doi: 10.1038/nature02772 pmid:15295594
83 Reithmaier J P, Sek G, L?ffler A, Hofmann C, Kuhn S, Reitzenstein S, Keldysh L V, Kulakovskii V D, Reinecke T L, Forchel A. Strong coupling in a single quantum dot-semiconductor microcavity system. Nature , 2004, 432(7014): 197–200
doi: 10.1038/nature02969 pmid:15538362
84 Yoshie T, Scherer A, Hendrickson J, Khitrova G, Gibbs H M, Rupper G, Ell C, Shchekin O B, Deppe D G. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature , 2004, 432(7014): 200–203
doi: 10.1038/nature03119 pmid:15538363
85 Yamaguchi M, Asano T, Noda S. Photon emission by nanocavity-enhanced quantum anti-Zeno effect in solid-state cavity quantum-electrodynamics. Optics Express , 2008, 16(22): 18067–18081
doi: 10.1364/OE.16.018067 pmid:18958086
86 Yao P J, Rao M V S C, Hughes S. On-chip single photon sources using planar photonic crystals and single quantum dots. Laser & Photonics Rev iews, 2010, 4(4): 499–516
87 Hennessy K, Badolato A, Winger M, Gerace D, Atatüre M, Gulde S, F?lt S, Hu E L, Imamo?lu A. Quantum nature of a strongly coupled single quantum dot-cavity system. Nature , 2007, 445(7130): 896–899
doi: 10.1038/nature05586 pmid:17259971
88 Shan G C, Zhao X H, Huang W. Nanolaser with a single-graphene-nanoribbon in a microcavity. Journal of Nanoelectronics and Optoelectronics , 2011, 6(2): 138–143
89 Nomura M, Kumagai N, Iwamoto S, Ota Y, Arakawa Y. Laser oscillation in a strongly coupled single-quantum-dot-nanocavity system. Nature Physics , 2010, 6(4): 279–283
doi: 10.1038/nphys1518
90 Cirac J I, Zoller P, Kimble H J, Mabuchi H. Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network. Physical Review Letters , 1997, 78(16): 3221–3224
doi: 10.1103/PhysRevLett.78.3221
[1] Lai WANG,Wenbin LV,Zhibiao HAO,Yi LUO. Recent progresses on InGaN quantum dot light-emitting diodes[J]. Front. Optoelectron., 2014, 7(3): 293-299.
[2] Amin RANJBARAN. Temperature effects on output characteristics of quantum dot white light emitting diode[J]. Front Optoelec, 2012, 5(3): 284-291.
[3] Weiming WANG, Jun YANG, Xin ZHU, Jamie PHILLIPS. Intermediate-band solar cells based on dilute alloys and quantum dots[J]. Front Optoelec Chin, 2011, 4(1): 2-11.
[4] Guoliang LIU, Jianghong YAO, Jingjun XU, Zhanguo WANG. Temperature dependence of photoluminescence of QD arrays[J]. Front Optoelec Chin, 2008, 1(3-4): 258-262.
[5] JIA Guozhi, YAO Jianghong, SHU Yongchun, WANG Zhanguo. Optical properties and structure of InAs quantum dots in near-infrared band[J]. Front. Optoelectron., 2008, 1(1-2): 134-137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed