Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec    2012, Vol. 5 Issue (2) : 133-137    https://doi.org/10.1007/s12200-012-0252-3
RESEARCH ARTICLE
Ceramic-metal package for high power LED lighting
Yu Jin HEO1,2, Hyo Tae KIM1(), Sahn NAHM2, Jihoon KIM1, Young Joon YOON1, Jonghee KIM1
1. Korea Institute of Ceramic Engineering and Technology, Seoul 153–801, Korea; 2. Department of Materials Science and Engineering, Korea University, Seoul 136–701, Korea
 Download: PDF(337 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

High power light-emitting diodes (LEDs) lighting has drawn a great interest in the field of street light system in recent years. Key parameters for successful launching of LED street light in the commercial market are price and light efficiency, respectively, and they are greatly influenced by the materials and design factors used in high power LED package. This article presents a new design and materials processing technology to realize the solution of LED packaging with advantageous in price and performance. Cost effective materials and processing technology can be realized via thick film glass-ceramic insulating layer and silver conductor. Highly effective thermal design using direct heat dissipation to heat sink in LED package is demonstrated.

Keywords light-emitting diodes (LEDs) package      high-power      thick film      heat dissipation      thermal resistance     
Corresponding Author(s): KIM Hyo Tae,Email:hytek@kicet.re.kr   
Issue Date: 05 June 2012
 Cite this article:   
Yu Jin HEO,Hyo Tae KIM,Sahn NAHM, et al. Ceramic-metal package for high power LED lighting[J]. Front Optoelec, 2012, 5(2): 133-137.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-012-0252-3
https://academic.hep.com.cn/foe/EN/Y2012/V5/I2/133
Fig.1  (a) The illustration of a ceramic-metal based LED package and (b) a process flow chart
Fig.2  One-chip mounted LED package test boards.
(a) Conventional FR-4 PCB; (b) thermal-via PCB; (c) ceramic-metal PCB
Fig.3  Photo imaging of test set-up for measuring thermal resistance
Fig.4  Optical images of ceramic-metal LED packages.
(a) Under-sintering; (b) over-sintering; (c) optimized sintering
Fig.5  Ceramic-metal based 50 W LED array module after LED chip mounting.
(a) After top insulation layer coating; (b) before top insulation layer coating (inset)
Fig.6  Differential structure functions for types of LED one-chip LED test boards
Fig.7  Prototype 50 W LED down lighting system using ceramic-metal package
1 Philips. White Paper: Street Lighting . www.lumileds.com
2 Liu S, Luo X B. LED Packaging for Lighting Applications: Design, Manufacturing and Testing. New York: Wiley and Chemical Industry Press, 2011
3 Mottier P. LEDs for Lighting Applications. New York: Wiley, 2008
4 Shin H W, Lee H S, Bang J H, Yoo S H, Jung S B, Kim K D. Variation of thermal resistance of LED module embedded by thermal via. Journal of the Microelectronics & packaging Society , 2010, 17(4): 95–100
5 Arik M, Becker C, Weaver S, Petroski J. Thermal management of LEDs: package to system. Proceedings of the SPIE , 2004, 5187: 64–75
doi: 10.1117/12.512731
6 Cheng T, Luo X B, Huang S Y, Liu S. Thermal analysis and optimization of multiple LED packaging based on a general analytical solution. International Journal of Thermal Sciences , 2010, 49(1): 196–201
doi: 10.1016/j.ijthermalsci.2009.07.010
7 Tsai M Y, Chen C H, Kang C S. Thermal measurements and analyses of low-cost high power LED packages and their modules. Microelectronics and Reliability , 2011
doi: 10.1016/j.microrel.2011.04.008 pmid:21966026
8 Liou B H, Chen C H, Horng R H, Chiang Y C, Wuu D S. Improvement of thermal management of high-power GaN-based light-emitting diodes. Microelectronics and Reliability , 2011
doi: 10.1016/j.microrel.2011.04.002 pmid:10.1016/j.microrel.2011.04.00221966026" target="blank">
doi: 10.1016/j.microrel.2011.04.00221966026
9 Yung K C, Liem H, Choy H S, Lun W K. Thermal performance of high brightness LED array package on PCB. International Communications in Heat and Mass Transfer , 2010, 37(9): 1266–1272
doi: 10.1016/j.icheatmasstransfer.2010.07.023
10 Weng C J. Advanced thermal enhancement and management of LED packages. International Communications in Heat and Mass Transfer , 2009, 36(3): 245–248
doi: 10.1016/j.icheatmasstransfer.2008.11.015
11 Christensen A, Graham S. Thermal effects in packaging high power light emitting diode arrays. Applied Thermal Engineering , 2009, 29(2-3): 364–371
doi: 10.1016/j.applthermaleng.2008.03.019
12 Kim L, Choi J H, Jang S H, Shin M W. Thermal analysis of LED array system with heat pipe. Thermochimica Acta , 2007, 455(1-2): 21–25
doi: 10.1016/j.tca.2006.11.031
13 Anithambigai P, Dinash K, Mutharasu D, Shanmugan S, Lim C K. Thermal analysis of power LED employing dual interface method and water flow as a cooling system. Thermochimica Acta , 2011, 523(1-2): 237–244
doi: 10.1016/j.tca.2011.06.001
14 Sim J K, Ashok K, Ra Y H, Im H C, Baek B J, Lee C R. Characteristic enhancement of white LED lamp using low temperature co-fired ceramic-chip on board package. Current Applied Physics , 2012, 12(2): 494–498
doi: 10.1016/j.cap.2011.08.008
15 Zhou W, Qi S, Li H, Shao S. Study on insulating thermal conductive BN/HDPE composites. Thermochimica Acta , 2007, 452(1): 36–42
doi: 10.1016/j.tca.2006.10.018
16 Kang M, Kang S. Influence of Al2O3 additions on the crystallization mechanism and properties of diopside/anorthite hybrid glass-ceramics for LED packaging materials. Journal of Crystal Growth , 2011, 326(1): 124–127
doi: 10.1016/j.jcrysgro.2011.01.081
[1] Zhuang ZHAO, Sophie BOUCHOULE, Jean-Christophe HARMAND, Gilles PATRIARCHE, Guy AUBIN, Jean-Louis OUDAR. Recent advances in development of vertical-cavity based short pulse source at 1.55 μm[J]. Front Optoelec, 2014, 7(1): 1-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed