Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec    2012, Vol. 5 Issue (3) : 266-270    https://doi.org/10.1007/s12200-012-0253-2
RESEARCH ARTICLE
A simple infrared nanosensor array based on carbon nanoparticles
Junjie DAI, Longyan YUAN, Qize ZHONG, Fengchao ZHANG, Hongfei CHEN, Chao YOU, Xiaohong FAN, Bin HU, Jun ZHOU()
Wuhan National Laboratory for Optoelectronics (WNLO), College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(272 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A simple (2×2) pixelated flexible infrared nanosensor array based on carbon nanoparticles (CNPs) was fabricated through a simple and low-cost flame method. By integrated with a micro controller unit, the sensor array could detect power density of incident infrared light in real-time. The mechanism for the superior infrared sensing property of the flexible sensor array based on CNP was also studied in detail in this work.

Keywords carbon nanoparticles (CNPs)      infrared sensor      array     
Corresponding Author(s): ZHOU Jun,Email:jun.zhou@mail.hust.edu.cn   
Issue Date: 05 September 2012
 Cite this article:   
Junjie DAI,Longyan YUAN,Qize ZHONG, et al. A simple infrared nanosensor array based on carbon nanoparticles[J]. Front Optoelec, 2012, 5(3): 266-270.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-012-0253-2
https://academic.hep.com.cn/foe/EN/Y2012/V5/I3/266
Fig.1  Schematic diagram of fabrication of flexible infrared sensor array. (a) Experimental setup for the growth of CNPs on ceramic plate; (b) ceramic plate with CNPs on it was placed onto pre-cured PDMS substrate; (c) CNPs were transferred to PDMS substrate by peeling ceramic plate from PDMS; (d) optical image for fabricated device; (e) SEM image of CNPs on PDMS; (f) Raman spectrum of CNPs
Fig.2  (a) Photocurrent response of pixel 1 of device at different power density of 2.17, 2.67, 3.38 and 5.2 mW/mm, respectively. The upper insets showed the measured power level received by pixel 1; (b) dependence of photocurrent of pixel 1 of device at different power densities. The dots and line show the experimental data and the corresponding fitting curve, respectively
Fig.3  (a) Schematic diagram of measurement system; (b) relationship between photoresponse of each pixel of infrared sensor array and pixel spot on which the laser beam was focused; (c) photocurrent response of four different pixels of photosensor array as laser beam was focused on pixel 1. The inset shows four digital numbers of 5, 3, 0 and 1, demonstrating the level of the power densities received by pixels 1, 2, 3 and 4, respectively
1 Takei K, Takahashi T, Ho J C, Ko H, Gillies A G, Leu P W, Fearing R S, Javey A. Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nature Materials , 2010, 9(10): 821–826
doi: 10.1038/nmat2835 pmid:20835235
2 Sekitani T, Noguchi Y, Hata K, Fukushima T, Aida T, Someya T. A rubberlike stretchable active matrix using elastic conductors. Science , 2008, 321(5895): 1468–1472
doi: 10.1126/science.1160309 pmid:18687922
3 Ko H C, Stoykovich M P, Song J Z, Malyarchuk V, Choi W M, Yu C J, Geddes J B 3rd, Xiao J L, Wang S D, Huang Y G, Rogers J A. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature , 2008, 454(7205): 748–753
doi: 10.1038/nature07113 pmid:18685704
4 Sekitani T, Yokota T, Zschieschang U, Klauk H, Bauer S, Takeuchi K, Takamiya M, Sakurai T, Someya T. Organic nonvolatile memory transistors for flexible sensor arrays. Science , 2009, 326(5959): 1516–1519
doi: 10.1126/science.1179963 pmid:20007895
5 Yamada T, Hayamizu Y, Yamamoto Y, Yomogida Y, Izadi-Najafabadi A, Futaba D N, Hata K. A stretchable carbon nanotube strain sensor for human-motion detection. Nature Nanotechnology , 2011, 6(5): 296–301
doi: 10.1038/nnano.2011.36 pmid:21441912
6 Yuan L Y, Dai J J, Fan X H, Song T, Tao Y T, Wang K, Xu Z, Zhang J, Bai X D, Lu P X, Chen J, Zhou J, Wang Z L. Self-cleaning flexible infrared nanosensor based on carbon nanoparticles. ACS Nano , 2011, 5(5): 4007–4013
doi: 10.1021/nn200571q pmid:21466218
7 Xiao X, Yuan L, Zhong J, Ding T, Liu Y, Cai Z, Rong Y, Han H, Zhou J, Wang Z L. High-strain sensors based on ZnO nanowire/polystyrene hybridized flexible films. Advanced Materials (Deerfield Beach, Fla.) , 2011, 23(45): 5440–5444
doi: 10.1002/adma.201103406 pmid:22002439
8 Yuan L Y, Tao Y T, Chen J, Dai J J, Song T, Ruan M Y, Ma Z W, Gong L, Liu K, Zhang X H, Hu X J, Zhou J, Wang Z L. Carbon nanoparticles on carbon fabric for flexible and high-performance field emitters. Advanced Functional Materials , 2011, 21(11): 2150–2154
doi: 10.1002/adfm.201100172
9 McDonald S A, Konstantatos G, Zhang S G, Cyr P W, Klem E J D, Levina L, Sargent E H. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nature Materials , 2005, 4(2): 138–142
doi: 10.1038/nmat1299 pmid:15640806
10 Johnston K W, Pattantyus-Abraham A G, Clifford J P, Myrskog S H, MacNeil D D, Levina L, Sargent E H. Schottky-quantum dot photovoltaics for efficient infrared power conversion. Applied Physics Letters , 2008, 92(15): 151115
doi: 10.1063/1.2912340
11 Klem E J D, MacNeil D D, Levina L, Sargent E H. Solution processed photovoltaic devices with 2% infrared monochromatic power conversion efficiency: performance optimization and oxide formation. Advanced Materials (Deerfield Beach, Fla.) , 2008, 20(18): 3433–3439
doi: 10.1002/adma.200800326
12 Xiao L, Zhang Y Y, Wang Y, Liu K, Wang Z, Li T Y, Jiang Z, Shi J P, Liu L A, Li Q Q, Zhao Y G, Feng Z H, Fan S S, Jiang K L. A polarized infrared thermal detector made from super-aligned multiwalled carbon nanotube films. Nanotechnology , 2011, 22(2): 025502
doi: 10.1088/0957-4484/22/2/025502 pmid:21135478
13 Rauch T, Boberl M, Tedde S F, Furst J, Kovalenko M V, Hesser G N, Lemmer U, Heiss W, Hayden O. Near-infrared imaging with quantum-dot-sensitized organic photodiodes. Nature Photonics , 2009, 3(6): 332–336
doi: 10.1038/nphoton.2009.72
14 Sch?del R, Ott T, Genzel R, Hofmann R, Lehnert M, Eckart A, Mouawad N, Alexander T, Reid M J, Lenzen R, Hartung M, Lacombe F, Rouan D, Gendron E, Rousset G, Lagrange A M, Brandner W, Ageorges N, Lidman C, Moorwood A F M, Spyromilio J, Hubin N, Menten K M. A star in a 15.2-year orbit around the supermassive black hole at the centre of the Milky Way. Nature , 2002, 419(6908): 694–696
doi: 10.1038/nature01121 pmid:12384690
15 Xu F L, Liu X, Fujimura K. Pedestrian detection and tracking with night vision. IEEE Transactions on Intelligent Transportation Systems , 2005, 6(1): 63–71
doi: 10.1109/TITS.2004.838222
16 Bachilo S M, Strano M S, Kittrell C, Hauge R H, Smalley R E, Weisman R B. Structure-assigned optical spectra of single-walled carbon nanotubes. Science , 2002, 298(5602): 2361–2366
doi: 10.1126/science.1078727 pmid:12459549
17 Freitag M, Martin Y, Misewich J A, Martel R, Avouris P H. Photoconductivity of single carbon nanotubes. Nano Letters , 2003, 3(8): 1067–1071
doi: 10.1021/nl034313e
18 Itkis M E, Borondics F, Yu A P, Haddon R C. Bolometric infrared photoresponse of suspended single-walled carbon nanotube films. Science , 2006, 312(5772): 413–416
doi: 10.1126/science.1125695 pmid:16627739
19 Pradhan B, Setyowati K, Liu H Y, Waldeck D H, Chen J. Carbon nanotube-polymer nanocomposite infrared sensor. Nano Letters , 2008, 8(4): 1142–1146
doi: 10.1021/nl0732880 pmid:18333623
20 Liu H P, Ye T, Mao C D. Fluorescent carbon nanoparticles derived from candle soot. Angewandte Chemie International Edition , 2007, 46(34): 6473–6475
doi: 10.1002/anie.200701271 pmid:17645271
21 Yang S T, Cao L, Luo P G J, Lu F S, Wang X, Wang H F, Meziani M J, Liu Y F, Qi G, Sun Y P. Carbon dots for optical imaging in vivo. Journal of the American Chemical Society , 2009, 131(32): 11308–11309
doi: 10.1021/ja904843x pmid:19722643
22 Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K. Raman spectrum of graphene and graphene layers. Physical Review Letters , 2006, 97(18): 187401
doi: 10.1103/PhysRevLett.97.187401 pmid:17155573
23 Pimenta M A, Dresselhaus G, Dresselhaus M S, Can?ado L G, Jorio A, Saito R. Studying disorder in graphite-based systems by Raman spectroscopy. Physical Chemistry Chemical Physics , 2007, 9(11): 1276–1291
doi: 10.1039/b613962k pmid:17347700
[1] Zhihua DING,Yi SHEN,Wen BAO,Peng LI. Fourier domain optical coherence tomography with ultralong depth range[J]. Front. Optoelectron., 2015, 8(2): 163-169.
[2] Muhammad Idrees AFRIDI, Jie ZHANG, Yousaf KHAN, Jiawei HAN, Aftab HUSSEIN, Shahab AHMAD. Impact of Rayleigh backscattering on single/dual feeder fiber WDM-PON architectures based on array waveguide gratings[J]. Front Optoelec, 2013, 6(1): 102-107.
[3] Abdul LATIF, Xiangjun XIN, Aftab HUSSAIN, Liu BO, Yousaf KHAN, Ashiq HUSSAIN, Abid MUNIR. An AWG based colorless WDM-PON with RZ-DPSK modulated downstream and re-modulation of DL signal for OOK upstream[J]. Front Optoelec, 2012, 5(3): 298-305.
[4] Minghui YANG, Sihai CHEN, Xin WU, Wen FU, Zhangli HUANG. Identification and replacement of defective pixel based on Matlab for IR sensor[J]. Front Optoelec Chin, 2011, 4(4): 434-437.
[5] Jun ZHANG, Chengchun TANG. Quantum dot photoelectrochemical solar cells based on TiO2-SrTiO3 heterostructure nanotube array scaffolds[J]. Front Optoelec Chin, 2011, 4(1): 93-102.
[6] Ziheng XU, Deming LIU, Hairong LIU, Qizhen SUN, Zhifeng SUN, Xu ZHANG, Wengang WANG. Design of distributed Raman temperature sensing system based on single-mode optical fiber[J]. Front Optoelec Chin, 2009, 2(2): 215-218.
[7] Yuntao HE, Yuesong JIANG, Guangda LIU. Optical synthetic aperture circle-array optimization based on genetic algorithm[J]. Front Optoelec Chin, 2008, 1(3-4): 268-273.
[8] Guoliang LIU, Jianghong YAO, Jingjun XU, Zhanguo WANG. Temperature dependence of photoluminescence of QD arrays[J]. Front Optoelec Chin, 2008, 1(3-4): 258-262.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed