Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec    2012, Vol. 5 Issue (3) : 298-305    https://doi.org/10.1007/s12200-012-0258-x
RESEARCH ARTICLE
An AWG based colorless WDM-PON with RZ-DPSK modulated downstream and re-modulation of DL signal for OOK upstream
Abdul LATIF(), Xiangjun XIN, Aftab HUSSAIN, Liu BO, Yousaf KHAN, Ashiq HUSSAIN, Abid MUNIR
State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
 Download: PDF(379 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We proposed an arrayed waveguide granting (AWG) based 10 Gbps full duplex wavelength division multiplexing passive optical network (WDM-PON) utilizing a return-to-zero differential phase shift keying (RZ-DPSK) modulation technique for down-link direction and then re-modulation of the downlink (DL) signal for the uplink (UL) direction using intensity modulation technique (OOK) with a data rate of 10 Gbps per channel. A successful cost effective colorless WDM-PON full duplex transmission operation for a data rate of 10 Gbps per channel, with a channel spacing of 60 GHz over a distance of 25 km without any optical amplification and dispersion compensation is achieved within low power penalty.

Keywords wavelength division multiplexing passive optical network (WDM-PON)      arrayed waveguide grating (AWG)      centralized light source      differential phase shift keying (DPSK)      re-modulation     
Corresponding Author(s): LATIF Abdul,Email:alatiph@gmail.com   
Issue Date: 05 September 2012
 Cite this article:   
Abdul LATIF,Xiangjun XIN,Aftab HUSSAIN, et al. An AWG based colorless WDM-PON with RZ-DPSK modulated downstream and re-modulation of DL signal for OOK upstream[J]. Front Optoelec, 2012, 5(3): 298-305.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-012-0258-x
https://academic.hep.com.cn/foe/EN/Y2012/V5/I3/298
Fig.1  Basic functions of arrayed-waveguide × multiplexer. (a) Multiplexing; (b) demultiplexing; (c) ADM operation; (d) ×interconnect
Fig.2  AWG multiplexer
Fig.3  Schematic diagram of AWG based 10 Gbps RZ-DPSK DL and OOK UL WDM-PON
Fig.4  Proposed AWG based 10-Gbps RZ-DPSK DL & OOK Based UL WDM-PON
Fig.5  BER Graph for four multiplex channels DPSK DL & OOK UL (B2B & 25 km)
Fig.6  BER graph for four multiplex channels RZ-DPSK DL & OOK UL for 25 km
Fig.7  BER graph for four multiplex channels DPSK DL and OOK UL for B2B
Fig.8  Average BER graph for four multiplex channels DPSK DL and OOK UL (25km & B2B)
Fig.9  Eye Diagrams
1 TU report. Trends in Telecommunication reform 2010/11-Enabling tomorrow’s Digital World. 2011
2 Chanclou P, Gosselin S, Palacios J F, Alvarez V L, Zouganeli E. Overview of the optical broadband access evolution: a joint article by operators in the IST network of excellence e-Photon/One. IEEE Communications Magazine , 2006, 44(8): 29-35
doi: 10.1109/MCOM.2006.1678106
3 Chang G K, Chowdhury A, Jia Z S, Chien H C, Huang M F, Yu J J, Ellinas G. Key technologies of WDM-PON for future converged optical broadband access networks. IEEE/OSA Journal of Optical Communications and Networking , 2009, 1(4): C35-C50
4 Langer K D, Vathke J, Habel K, Arellano C. Recent developments in WDM-PON technology. ICTON’2006 , 2006, 1: 12-13
5 Maher R, Barry L P, Anandarajah P M. Cost efficient directly modulated DPSK downstream transmitter and colourless upstream remodulation for full-duplex WDM-PONs. In: 2010 Conference on OFC/NFOEC . 2010,1-3
6 Yeh C H, Chien H C, Chi S. Cost-effective colorless RSOA-based WDM-PON with 2.5 Gbit/s uplink signal. In: 2008 Conference on OFC/NFOEC . 2008, 1-3
7 Zhang F, Zhong W D, Xu Z W, Cheng T H, Michi C, Andonovic I. A broadcast/multicast-capable carrier-reuse WDM-PON. Journal of Lightwave Technology , 2011, 29(15): 2276-2284
8 Park S J, Lee C H, Jeong K T, Park H J, Ahn J G, Song K H. Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network. Journal of Lightwave Technology , 2004, 22(11): 2582-2591
doi: 10.1109/JLT.2004.834504
9 Ponzini F, Cavaliere F, Berrettini G, Presi M, Ciaramella E, Calabretta N, Bogoni A. Evolution Scenario Toward WDM-PON. IEEE/OSA Journal of Optical Communications and Networking , 2009, 1(4): C25-C34
doi: 10.1364/JOCN.1.000C25
10 Calabretta N, Presi M, Proietti R, Contestabile G, Ciaramella E. A bidirectional WDM/TDM-PON using DPSK downstream signals and a narrowband AWG. IEEE Photonics Technology Letters , 2007, 19(16): 1227-1229
doi: 10.1109/LPT.2007.902168
11 Ji H C, Yamashita I, Kitayama K I. Cost-effective WDM-PON delivering up/downstream data and broadcast services on a single wavelength using mutually injected FPLDs. In: 2008 Conference on OFC/NFOEC . 2008, 1-3
12 Kazovsky L G, Shaw W T, Gutierrez D, Cheng N, Wong S W. Next-generation optical access networks. Journal of Lightwave Technology , 2007, 25(11): 3428-3442
doi: 10.1109/JLT.2007.907748
13 Ratnam J, Chakrabarti S, Datta D. Impact of transmission impairments on demultiplexed channels in WDMPONs employing AWG-based remote nodes. IEEE/OSA Journal of Optical Communications and Networking , 2010, 2(10): 848-858
doi: 10.1364/JOCN.2.000848
14 Banerjee A, Park Y, Clarke F, Song H, Yang S, Kramer G, Kim K, Mukherjee B. Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review. Journal of Optical Networking , 2005, 4(11): 737-758
doi: 10.1364/JON.4.000737
16 Koteles E S. Integrated planar waveguide demultiplexers for high density WDM applications. Fiber and Integrated Optics , 1999, 18(4): 211-244
doi: 10.1080/014680399244569
17 Saito T, Ota T, Toratani T, Ono Y. 16-ch arrayed waveguide grating module with 100-GHz spacing. Fukawa review , 2000, 19(9): 47-52
18 Takahashi H, Oda K, Toba H, Inoue Y. Transmission characteristics of arrayed waveguideN × N wavelength multiplexer. Journal of Lightwave Technology , 1995, 13(3): 447-455
19 Achyut K D, Niloy K D, Masahiko Fujiwara. WDM Technologies: Passive Optical Components. San Diego, CA: Elsevier, 2002
20 Kaminow I P, Li T Y, Willner A E. Optical Fiber Telecommunications Volume-A: Components and Subsystems. 5th ed. London: Academic Press Elsevier Inc., 2008
21 Han K E, Yang W H, Yoo K M, Kim Y C. Design of AWG based WDM-PON architecture with multicast capability. In: 2008 IEEE INFOCOM Workshops . 2008, 1 -6
22 Smit M K. New focusing and dispersive planar component based on an optical phased array. Electronics Letters , 1988, 24(7): 385-386
doi: 10.1049/el:19880260
[1] Muhammad Idrees AFRIDI, Jie ZHANG, Yousaf KHAN, Jiawei HAN, Aftab HUSSEIN, Shahab AHMAD. Impact of Rayleigh backscattering on single/dual feeder fiber WDM-PON architectures based on array waveguide gratings[J]. Front Optoelec, 2013, 6(1): 102-107.
[2] WANG Xue, HE Zhixue, LIU Hongxing, LIU Hong, LI Wei, HUANG Dexiu, CHI Nan. Improved optical coding method for orthogonal ASK/DPSK modulation format[J]. Front. Optoelectron., 2008, 1(1-2): 14-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed