Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec    2012, Vol. 5 Issue (3) : 306-310    https://doi.org/10.1007/s12200-012-0262-1
RESEARCH ARTICLE
Generation and transmission of dispersion tolerant 10-Gbps RZ-OOK signal for radio over fiber link
Yousaf KHAN(), Xiangjun XIN, Aftab HUSSAIN, Liu BO, Shahryar SHAFIQUE
State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
 Download: PDF(223 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We proposed and demonstrated the generation and transmission of 10-Gbps return-to-zero ON/OFF keying (RZ-OOK) signal using a new technique without pulse carving at transmitter. The new technique is characterized by a 3 dB built-in gain with better tolerance for chromatic dispersion in standard single mode fiber (SSMF). Fiber Bragg grating (FBG) is used as chromatic dispersion compensating device to investigate the tolerance of the proposed scheme. The simulation model of wavelength division multiplexing (WDM) based on OptiSystem.v.8.0 is presented. Simulation results show that there are error free transmission performance in a distance of 600 km with negligible power penalty and improved receiver sensitivity compared to conventional pulse carving approach.

Keywords modulation      pulse carver      chromatic dispersion      fiber Bragg gratings      radio over fiber (RoF)     
Corresponding Author(s): KHAN Yousaf,Email:yousafkhalil@gmail.com   
Issue Date: 05 September 2012
 Cite this article:   
Yousaf KHAN,Xiangjun XIN,Aftab HUSSAIN, et al. Generation and transmission of dispersion tolerant 10-Gbps RZ-OOK signal for radio over fiber link[J]. Front Optoelec, 2012, 5(3): 306-310.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-012-0262-1
https://academic.hep.com.cn/foe/EN/Y2012/V5/I3/306
Fig.1  Simulation and experimental setup of proposed RoF scheme
Fig.2  Comparison of proposed and conventional transmitters
parametersvalues
dispersion parameter of SMF17 ps/nm/km
dispersion slope of SMF0.075 ps/nm2/km
attenuation coefficient of SMF0.2 dB/km
effective core area of SMF80 um2
non linear index-coefficient of SMF2.6×10-20
responsibility of photo detector10 nA
dispersion compensation of FBG-850 nm
Tab.1  Parameters used for simulation
Fig.3  Comparison of proposed and conventional schemes in term of BER vs. launch power
Fig.4  Comparison of proposed and conventional schemes in term of -factor vs. launch power
Fig.5  Comparison of proposed and conventional schemes in term of BER vs. received optical power
Fig.6  Eye diagram for (a) proposed scheme and (b) conventional scheme after 600 km transmission
1 Yao J P. Microwves photonics. Lightwave Technology , 2009, 27(3): 314–335
2 Hellerbrand S, Hanik N. Techniques for electronic mitigation of transmission impairments in fiber-optic communication systems. In: Proceedings of the 10th Anniversary International Conference on Transparent Optical Networks (ICTON) . 2008, 1: 182–185
3 Chandra S, Vardhanan A V, Gangopadhyay R. Compensation of chromatic dispersion-induced power fading using optimized chirped fiber Bragg grating for millimeter-wave radio-over-fiber system. IET Circuits Devices &Systems , 2008, 2(1): 123–127
4 Fews H S, Stephen M F C, Forysaik W, Nayar B K, GleesonL M. Experimental comparison of fiber and grating-based dispersion compensation schemes for 40 channel 10 Gb/s DWDM systems. In: Proceedings of European Conference on optical communications . 2006, 1–2
5 Gnanagurunathan G, Rehman F A. Comparing FBG and DCF as dispersion in the long haul narrowband WDM systems. In: Proceedings of 2006 IFIP International Conference on Wireless and Optical Communications Networks . 2006, 4
6 Masella B, Zhang X P. A novel single wavelength balanced system for radio over fiber links. IEEE Photonics Technology Letters , 2006, 18 (1):301–303
7 Li S Y, Zheng X P, Zhang H Y, Zhou B K. Compensation of dispersion induced power fading for highly linear radio-over-fiber link using carrier phase-shifted double sideband modulation. Optics Letters , 2011, 36(4): 546–548
8 Ma J X, Yu J, Yu C X, Xin X J, Zeng J Y, Chen L. Fiber dispersion influence on transmission of the optical millimeter-waves generated using LN-MZM intensity modulation. Journal of Lightwave Technology , 2007, 25(11): 3244–3256
9 Lach E, Schuh K, Schmidt M. Application of electro absorption modulators for high-speed transmission systems. Journal of Optical and Fiber Communications Research , 2005, 2(2): 140–170
10 Agrawal G P. Fiber Optic Communication System. 3rd ed. New York: Wiley Intersineces
11 Spolitis S, Ivanovs G. Extending the reach of DWDM-PON access network using chromatic dispersion compensation. In: Proceedings of 2011 IEEE Swedish Communication Technologies Workshop (Swe-CTW) . 2011, 29–33
12 van den Borne D, Veljanoski V, de Man, E, Gaubatz U, Zuccaro C, Paquet C, Painchaud Y, Jansen S L. Cost-effective 10.7-Gbit/s long-haul transmission using fiber Bragg gratings for in-line dispersion compensation. In: Proceedings of Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference (OFC/NFOEC) . 2007, OThS5
[1] Yan ZHU, Yining MU, Fanqi TANG, Peng DU, Hang REN. A corona modulation device structure and mechanism based on perovskite quantum dots random laser pumped using an electron beam[J]. Front. Optoelectron., 2020, 13(3): 291-302.
[2] Chuyu ZHONG, Junying LI, Hongtao LIN. Graphene-based all-optical modulators[J]. Front. Optoelectron., 2020, 13(2): 114-128.
[3] Tianliang WANG, Xiaoying LIU. A novel modulation format identification based on amplitude histogram space[J]. Front. Optoelectron., 2019, 12(2): 190-196.
[4] Juhao LI, Zhongying WU, Dawei GE, Jinglong ZHU, Yu TIAN, Yichi ZHANG, Jinyi YU, Zhengbin LI, Zhangyuan CHEN, Yongqi HE. Weakly-coupled mode division multiplexing over conventional multi-mode fiber with intensity modulation and direct detection[J]. Front. Optoelectron., 2019, 12(1): 31-40.
[5] Xiupu ZHANG. Broadband linearization for 5G fronthaul transmission[J]. Front. Optoelectron., 2018, 11(2): 107-115.
[6] Jacqueline GUNTHER, Stefan ANDERSSON-ENGELS. Review of current methods of acousto-optical tomography for biomedical applications[J]. Front. Optoelectron., 2017, 10(3): 211-238.
[7] Liu YANG, Fengguang LUO. Generation and transmission analysis of 4-ary frequency shift keying based on dual-parallel Mach-Zehnder modulator[J]. Front. Optoelectron., 2017, 10(2): 160-165.
[8] Liu YANG,Fengguang LUO. Novel frequency shift keying modulation based on fiber Bragg gratings and intensity modulators[J]. Front. Optoelectron., 2016, 9(4): 616-620.
[9] Michael J. CONNELLY,Lukasz KRZCZANOWICZ,Pascal MOREL,Ammar SHARAIHA,Francois LELARGE,Romain BRENOT,Siddharth JOSHI,Sophie BARBET. 40 Gb/s NRZ-DQPSK data wavelength conversion with amplitude regeneration using four-wave mixing in a quantum dash semiconductor optical amplifier[J]. Front. Optoelectron., 2016, 9(3): 341-345.
[10] Anjin LIU,Dieter BIMBERG. Vertical-cavity surface-emitting lasers with nanostructures for optical interconnects[J]. Front. Optoelectron., 2016, 9(2): 249-258.
[11] Xiaoping ZHENG,Shangyuan LI,Hanyi ZHANG,Bingkun ZHOU. Researches in microwave photonics based packages for millimeter wave system with wide bandwidth and large dynamic range[J]. Front. Optoelectron., 2016, 9(2): 186-193.
[12] Ming LI,Ninghua ZHU. Recent advances in microwave photonics[J]. Front. Optoelectron., 2016, 9(2): 160-185.
[13] Hou-Tong CHEN. Semiconductor activated terahertz metamaterials[J]. Front. Optoelectron., 2015, 8(1): 27-43.
[14] Ming LI,José AZA?A,Ninghua ZHU,Jianping YAO. Recent progresses on optical arbitrary waveform generation[J]. Front. Optoelectron., 2014, 7(3): 359-375.
[15] Zhao WU,Yu YU,Xinliang ZHANG. Chromatic dispersion monitoring using semiconductor optical amplifier[J]. Front. Optoelectron., 2014, 7(3): 399-405.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed