Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec    2012, Vol. 5 Issue (2) : 200-207    https://doi.org/10.1007/s12200-012-0263-0
RESEARCH ARTICLE
A simple experimental scheme for M-QAM optical signals generation
Lei LEI(), Yu YU, Fei LOU, Zheng ZHANG, Lei XIANG, Xinliang ZHANG
Wuhan National Laboratory for Optoelectronics, College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(816 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A simple scheme to generate optical quadrature amplitude modulation (QAM) signals is proposed based on different types of delay interferometers (DIs). The simulated results show that 16QAM, 64QAM and 256 QAM optical signals can be generated by 2×2, 3×3 and 4×4 DI, respectively, and the outputs of the proposed scheme are similar to those of the conventional schemes. The operation principle is discussed and the transmission properties of the square 16QAM as well as 64QAM signals are analyzed and compared with common approach.

Keywords advanced modulation formats      multi-level modulation formats      quadrature amplitude modulation      delay interferometers (DIs)     
Corresponding Author(s): LEI Lei,Email:leileihust@gmail.com   
Issue Date: 05 June 2012
 Cite this article:   
Lei LEI,Yu YU,Fei LOU, et al. A simple experimental scheme for M-QAM optical signals generation[J]. Front Optoelec, 2012, 5(2): 200-207.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-012-0263-0
https://academic.hep.com.cn/foe/EN/Y2012/V5/I2/200
Fig.1  (a) Schematic diagram of square 16QAM optical signal generation; (b) structure of the 3×3 DI (MZM: Mach-Zehnder modulator. CW: continuous wave)
Fig.2  Structure of 4×4 DI
Fig.3  Simulation setup for the generations of square and star 16QAM. SSMF: Standard single mode fiber. BPF: Band pass filter. EDFA: Erbium-doped fiber amplifier. DCF: Dispersion compensation fiber
Fig.4  Constellations and eye diagrams of 16QAM, 64QAM and 256QAM signals. (a),(e) Square 16 QAM; (b),(f) Star 16 QAM; (c),(g) 64QAM; (d),(h) 256QAM
Fig.5  Eye and constellation diagrams of 16QAM signals after transmission. (a),(e) Scheme A, 80 km SSMF; (b),(f) scheme B, 80 km SSMF; (c),(g) scheme A, 140 km SSMF; (d),(h) scheme B, 140 km SSMF
Fig.6  Eye and constellation diagrams of 64QAM signals after transmission. (a),(e) Scheme A, 80 km SSMF; (b),(f) scheme B, 80 km SSMF; (c),(g) scheme A, 100 km SSMF; (d),(h) scheme B, 100 km SSMF
Fig.7  Eye and constellation diagrams of 16QAM and 64QAM signals after transmission. (a),(e) Scheme A, 20 km SSMF; (b),(f) scheme B, 20 km SSMF; (c),(g) scheme A, 20 km SSMF; (d),(h) scheme B, 20 km SSMF
1 Gnauck A H, Winzer P J, Konczykowska A, Jorge F, Dupuy J Y, Riet M, Charlet G, Zhu B, Peckham D W. Generation and transmission of 21.4-Gbaud PDM 64-QAM using a novel high-power DAC driving a single I/Q modulator. Journal of Lightwave Technology , 2012, 30 (4): 532-536
2 Lu G W, Sakamoto T, Kawanishi T. Rectangular QPSK for generation of optical eight-ary phase-shift keying. Optics Express , 2011, 19 (19): 18479-18485
3 Bakhtiari Z, Wang J, Wu X X, Yang J Y, Nuccio S R, Hellwarth R W, Willner A E. Demonstration of 10-40-Gbaud baud-rate-tunable optical generation of 16-QAM from a QPSK signal using a variable DGD element. In: 2011 Conference on Lasers and Electro-Optics (CLEO), CThX5
4 Seimetz M, Noelle M, Patzak E. Optical systems with high-order DPSK and star QAM modulation based on interferometric direct detection. Journal of Lightwave Technology , 2007, 25(6): 1515-1529
doi: 10.1109/JLT.2007.896810
5 Kobayashi1 T, Sano A, Masuda H, Ishihara K, Yoshida E, Miyamoto Y, Yamazaki H, Yamada T. 160-Gb/s polarization-multiplexed 16-QAM long-haul transmission over 3123 km using digital coherent receiver with digital PLL based frequency offset compensator. In: 2010 Conference on OFC/NFOEC . 2010, OTuD1
6 Seimetz M. Performance of coherent optical square 16-QAM-systems based on IQ-transmitters and homodyne receivers with digital phase estimation. In: Optical Fiber Communication Conference, 2006 and the 2006 National Fiber Optic Engineers Conference . 2006, 10
7 Gnauck A H, Winzer P J, Chandrasekhar S, Liu X, Zhu B, Peckham D W. 10 × 224-Gb/s WDM transmission of 28-Gbaud PDM16-QAM on a 50-GHz grid over 1200 km of fiber. In: 2010 Conference on OFC/NFOEC . 2010, PDPB8
8 Yu J J. Zhou X, Gupta S, Huang YK, Huang M F. A novel scheme to generate 112.8-Gb/s PM-RZ-64QAM optical signal. IEEE Photonics Technology Letters , 2010, 22(2): 115-117
doi: 10.1109/LPT.2009.2036737
9 Yu J J, Zhou X, Huang Y K, Gupta S, Huang M F, Wang T. 112.8-Gb/s PM-RZ-64QAM optical signal generation and transmission on a 12.5 GHz WDM grid. In: 2010 Conference on OFC/NFOEC . 2010, OThM1
10 Nakazawa M, Okamoto S, Omiya T, Kasai K, Yoshida M. 256 QAM (64 Gbit/s) Coherent Optical Transmission over 160 km with an Optical Bandwidth of 5.4 GHz. IEEE Photonics Techonology Letters , 2010: 185-187
11 Yamazaki H, Yamada T, Goh T, Sakamaki Y, Kaneko A. 64QAM modulator with a hybrid configuration of silica PLCs and LiNbO3 phase modulators for 100-Gb/s applications. In: 35th European Conference on Optical Communication (ECOC) , 2009, 1-4
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed