|
|
|
Polarization properties in helical metamaterials |
Zhenyu YANG1( ), Peng ZHANG1, Peiyuan XIE2, Lin WU1, Zeqin LU1, Ming ZHAO1 |
| 1. Wuhan National Laboratory for Optoelectronics, College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; 2. Hunan Electric Power Company Dispatches & Communication Center, Changsha 410007, China |
|
|
|
|
Abstract In the last few years, there has been growing interest in the research of helical metamaterials due to the advantages of giant circular dichroism, broad operation bands, and compact structures. However, most of the researches were in the cases of single-, circular-helical metamaterials, and normal incidences. In this paper, we reviewed recent simulation works in the helical metamaterials with the finite-difference time-domain (FDTD) method, which mainly included the optical performances of double-, three-, four-helical metamaterials, performances of elliptical-helical metamaterials, and the polarization properties under the condition of oblique incidences. The results demonstrate that the double-helical metamaterials have operation bands more than 50%, which is broader than those of the single-helical structures. But both of them have low signal-to-noise ratios about 10 dB. The three- and four-helical metamaterials have significant improvement in overall performance. For elliptical-helixes, simulation results suggest that the transmitted light can have elliptical polarization states. On the condition of oblique incidences, the novel property of tunable polarization states occurred in the helical metamaterials, which could have much broader potential applications such as tunable optical polarizers, tunable beam splitters, and tunable optical attenuators.
|
| Keywords
finite-difference time-domain (FDTD) method
polarization
chiral media
helical metamaterials
|
|
Corresponding Author(s):
YANG Zhenyu,Email:zyang@mail.hust.edu.cn
|
|
Issue Date: 05 September 2012
|
|
| 1 |
Pendry J B. Negative refraction makes a perfect lens. Physical Review Letters , 2000, 85(18): 3966-3969 doi: 10.1103/PhysRevLett.85.3966 pmid:11041972
|
| 2 |
Alù A, Engheta N. Achieving transparency with plasmonic and metamaterial coatings. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics , 2005, 72(1 Pt 2): 016623 doi: 10.1103/PhysRevE.72.016623 pmid:16090123
|
| 3 |
Leonhardt U. Optical conformal mapping. Science , 2006, 312(5781): 1777-1780 doi: 10.1126/science.1126493 pmid:16728596
|
| 4 |
Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields. Science , 2006, 312(5781): 1780-1782 doi: 10.1126/science.1125907 pmid:16728597
|
| 5 |
Monat C, Grillet C, Corcoran B, Moss D J, Eggleton B J, White T P, Krauss T F. Investigation of phase matching for third-harmonic generation in silicon slow light photonic crystal waveguides using Fourier optics. Optics Express , 2010, 18(7): 6831-6840 doi: 10.1364/OE.18.006831 pmid:20389702
|
| 6 |
Alu A, Engheta N. Guided modes in a waveguide filled with a pair of singlenegative (SNG) double-negative (DNG), and/or double-positive (DPS) layers. IEEE Transactions on Microwave Theory and Techniques , 2004, 52(1): 199-210 doi: 10.1109/TMTT.2003.821274
|
| 7 |
Ma Y, Li X, Yu H, Tong L, Gu Y, Gong Q. Direct measurement of propagation losses in silver nanowires. Optics Letters , 2010, 35(8): 1160-1162 doi: 10.1364/OL.35.001160 pmid:20410952
|
| 8 |
Wang P, Gu F, Zhang L, Tong L. Polymer microfiber rings for high-sensitivity optical humidity sensing. Applied Optics , 2011, 50(31): G7-G10 doi: 10.1364/AO.50.0000G7 pmid:22086051
|
| 9 |
Meng C, Xiao Y, Wang P, Zhang L, Liu Y, Tong L. Quantum-dot-doped polymer nanofibers for optical sensing. Advanced Materials (Deerfield Beach, Fla.) , 2011, 23(33): 3770-3774 pmid:21766349
|
| 10 |
Wu D K C, Kuhlmey B T, Eggleton B J. Ultrasensitive photonic crystal fiber refractive index sensor. Optics Letters , 2009, 34(3): 322-324 doi: 10.1364/OL.34.000322 pmid:19183645
|
| 11 |
Wiltshire M C K, Pendry J B, Young I R, Larkman D J, Gilderdale D J, Hajnal J V. Microstructured magnetic materials for RF flux guides in magnetic resonance imaging. Science , 2001, 291(5505): 849-851 doi: 10.1126/science.291.5505.849 pmid:11157159
|
| 12 |
Wang X, Venugopal G, Zeng J, Chen Y, Lee D H, Litchinitser N M, Cartwright A N. Optical fiber metamagnetics. Optics Express , 2011, 19(21): 19813-19821 doi: 10.1364/OE.19.019813 pmid:21996989
|
| 13 |
Liu H, Cao J X,.Zhu N, Liu N, Ameling R, Giessen H. Lagrange model for the chiral optical properties of stereometamaterials. Physical Review B: Condensed Matter and Materials Physics , 2010, 81(24): 241403
|
| 14 |
Li T Q, Liu H, Li T, Wang S M, Wang F M, Wu R X, Chen P, Zhu S N, Zhang X. Magnetic resonance hybridization and optical activity of microwaves in a chiral metamaterial. Applied Physics Letters , 2008, 92(13): 131111
|
| 15 |
Liu N, Liu H, Zhu S N, Giessen H. Stereometamaterials. Nature Photonics , 2009, 3: 157-162
|
| 16 |
Liu H, Genov D A, Wu D M, Liu Y M, Liu Z W, Sun C, Zhu S N, Zhang X. Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures. Physical Review B: Condensed Matter and Materials Physics , 2007, 76(7): 073101
|
| 17 |
Gansel J K, Thiel M, Rill M S, Decker M, Bade K, Saile V, von Freymann G, Linden S, Wegener M. Gold helix photonic metamaterial as broadband circular polarizer. Science , 2009, 325(5947): 1513-1515 doi: 10.1126/science.1177031 pmid:19696310
|
| 18 |
Gansel J K, Wegener M, Burger S, Linden S. Gold helix photonic metamaterials: a numerical parameter study. Optics Express , 2010, 18(2): 1059-1069 doi: 10.1364/OE.18.001059 pmid:20173927
|
| 19 |
Gansel J K, Latzel M, Fr?lich A, Kaschke J, Thiel M, Wegener M. Tapered gold-helix metamaterials as improved circular polarizers. Applied Physics Letters , 2012, 100(10): 101109
|
| 20 |
Wu C, Li H Q, Wei Z Y, Yu X T, Chan C T. Theory and experimental realization of negative refraction in a metallic helix array. Physical Review Letters , 2010, 105(24): 247401
|
| 21 |
Wu C, Li H Q, Yu X, Li F, Chen H. Metallic helix array as a broadband wave plate. Physical Review Letters, 2011, 107(17): 177401
|
| 22 |
Lub J, van de Witte P, Doornkamp C, Vogels J P A, Wegh R T. Stable photopatterned cholesteric layers made by photoisomerization and subsequent photopolymerization for use as color filters in liquid-crystal displays. Advanced Materials (Deerfield Beach, Fla.) , 2003, 15(17): 1420-1425 doi: 10.1002/adma.200305125
|
| 23 |
De Filpo G, Nicoletta F P, Chidichimo G. Cholesteric emulsions for colored displays. Advanced Materials (Deerfield Beach, Fla.) , 2005, 17(9): 1150-1152 doi: 10.1002/adma.200401912
|
| 24 |
Yoshioka T, Ogata T, Nonaka T, Moritsugu M, Kim S N, Kurihara S. Reversible-photon-mode full-color display by means of photochemical modulation of a helically cholesteric structure. Advanced Materials (Deerfield Beach, Fla.) , 2005, 17(10): 1226-1229 doi: 10.1002/adma.200401429
|
| 25 |
Loksztejn A, Dzwolak W. Vortex-induced formation of insulin amyloid superstructures probed by time-lapse atomic force microscopy and circular dichroism spectroscopy. Journal of Molecular Biology , 2010, 395(3): 643-655 doi: 10.1016/j.jmb.2009.10.065 pmid:19891974
|
| 26 |
Claborn K, Puklin-Faucher E, Kurimoto M, Kaminsky W, Kahr B. Circular dichroism imaging microscopy: application to enantiomorphous twinning in biaxial crystals of 1,8-dihydroxyanthraquinone. Journal of the American Chemical Society , 2003, 125(48): 14825-14831 doi: 10.1021/ja035644w pmid:14640658
|
| 27 |
Hecht E. Optics. 4th ed. San Francisco: Addison-Wesley , 2002, 357-358
|
| 28 |
Hikmet R A M, Kemperman H. Electrically switchable mirrors and optical components made from liquid-crystal gels. Nature , 1998, 392(6675): 476-479 doi: 10.1038/33110
|
| 29 |
Mitov M, Dessaud N. Going beyond the reflectance limit of cholesteric liquid crystals. Nature Materials , 2006, 5(5): 361-364 doi: 10.1038/nmat1619 pmid:16604079
|
| 30 |
Xiao J M, Cao H, He W L, Ma Z, Geng J, Wang L, Wang G, Yang H. Wide-band reflective polarizers from cholesteric liquid crystals with stable optical properties. Journal of Applied Polymer Science , 2007, 105(5): 2973-2977 doi: 10.1002/app.26561
|
| 31 |
Ha N Y, Ohtsuka Y, Jeong S M, Nishimura S, Suzaki G, Takanishi Y, Ishikawa K, Takezoe H. Fabrication of a simultaneous red-green-blue reflector using single-pitched cholesteric liquid crystals. Nature Materials , 2008, 7(1): 43-47 doi: 10.1038/nmat2045 pmid:17994028
|
| 32 |
Yang Z Y, Zhao M, Lu Y F. Similar structures, different characteristics: optical performances of circular polarizers with single- and double-helical metamaterials. Journal of Lightwave Technology , 2010, 28(21): 3055-3061
|
| 33 |
Yang Z Y, Zhao M, Lu P X, Lu Y F. Ultrabroadband optical circular polarizers consisting of double-helical nanowire structures. Optics Letters , 2010, 35(15): 2588-2590 doi: 10.1364/OL.35.002588 pmid:20680067
|
| 34 |
Yang Z Y, Zhao M, Lu P X. How to improve the signal-to-noise ratio for circular polarizers consisting of helical metamaterials? Optics Express , 2011, 19(5): 4255-4260 doi: 10.1364/OE.19.004255 pmid:21369255
|
| 35 |
Wu L, Yang Z, Zhao M, Yu Y, Li S, Zhang Q, Yuan X. Polarization characteristics of the metallic structure with elliptically helical metamaterials. Optics Express , 2011, 19(18): 17539-17545 doi: 10.1364/OE.19.017539 pmid:21935120
|
| 36 |
Wu L, Yang Z, Zhao M, Zhang P, Lu Z, Yu Y, Li S, Yuan X. What makes single-helical metamaterials generate “pure” circularly polarized light? Optics Express , 2012, 20(2): 1552-1560 doi: 10.1364/OE.20.001552 pmid:22274498
|
| 37 |
Berenger J P. A perfectly matched layer for the absorption of electromagnetic-waves. Journal of Computational Physics , 1994, 114(2): 185-200 doi: 10.1006/jcph.1994.1159
|
| 38 |
Harms P, Mittra R, Ko W. Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures. IEEE Transactions on Antennas and Propagation , 1994, 42(9): 1317-1324 doi: 10.1109/8.318653
|
| 39 |
Rakic A D, Djurisic A B, Elazar J M, Majewski M L. Optical properties of metallic films for vertical-cavity optoelectronic devices. Applied Optics , 1998, 37(22): 5271-5283 doi: 10.1364/AO.37.005271 pmid:18286006
|
| 40 |
Liu H, Liu Y M, Li T, Wang S M, Zhu S N, Zhang X. Coupled magnetic plasmons in metamaterials. Physica Status Solidi B , 2009, 246(7): 1397-1406
|
| 41 |
Liu H, Li T, Wang S M, Zhu S N. Hybridization effect in coupled metamaterials. Frontiers of Physics in China , 2010, 5(3): 277-290
|
| 42 |
Rukhlenko I D, Dissanayake C, Premaratne M. Visualization of electromagnetic-wave polarization evolution using the Poincaré sphere. Optics Letters , 2010, 35(13): 2221-2223 doi: 10.1364/OL.35.002221 pmid:20596200
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|