|
|
|
Recent development in colloidal quantum dots photovoltaics |
Li PENG, Jiang TANG( ), Mingqiang ZHU |
| Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China |
|
|
|
|
Abstract The increasing demand for sustainable and green energy supply spurred the surging research on high-efficiency, low-cost photovoltaics. Colloidal quantum dot solar cell (CQDSC) is a new type of photovoltaic device using lead chalcogenide quantum dot film as absorber materials. It not only has a potential to break the 33% Shockley-Queisser efficiency limit for single junction solar cell, but also possesses low-temperature, high-throughput solution processing. Since its first report in 2005, CQDSCs experienced rapid progress achieving a certified 7% efficiency in 2012, an averaged 1% efficiency gain per year. In this paper, we reviewed the research progress reported in the last two years. We started with background introduction and motivation for CQDSC research. We then briefly introduced the evolution history of CQDSC development as well as multiple exciton generation effect. We further focused on the latest efforts in improving the light absorption and carrier collection efficiency, including the bulk-heterojunction structure, quantum funnel concept, band alignment optimization and quantum dot passivation. Afterwards, we discussed the tandem solar cell and device stability, and concluded this article with a perspective. Hopefully, this review paper covers the major achievement in this field in year 2011–2012 and provides readers with a concise and clear understanding of recent CQDSC development.
|
| Keywords
lead sulfide
colloidal quantum dots (CQDs)
solar cells
multiple exciton generation (MEG)
atomic ligands
|
|
Corresponding Author(s):
TANG Jiang,Email:jtang@mail.hust.edu.cn
|
|
Issue Date: 05 December 2012
|
|
| 1 |
Jackson P, Hariskos D, Lotter E, Paetel S, Wuerz R, Menner R, Wischmann W, Powalla M. New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%. Progress in Photovoltaics: Research and Applications , 2011, 19(7): 894–897 doi: 10.1002/pip.1078
|
| 2 |
Semonin O E, Luther J M, Choi S, Chen H Y, Gao J, Nozik A J, Beard M C. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science , 2011, 334(6062): 1530–1533 doi: 10.1126/science.1209845 pmid:22174246
|
| 3 |
Ip A H, Thon S M, Hoogland S, Voznyy O, Zhitomirsky D, Debnath R, Levina L, Rollny L R, Carey G H, Fischer A, Kemp K W, Kramer I J, Ning Z, Labelle A J, Chou K W, Amassian A, Sargent E H. Hybrid passivated colloidal quantum dot solids. Nature Nanotechnology , 2012, 7: 577- 582 doi: 10.1038/nnano.2012.127
|
| 4 |
Li G, Zhu R, Yang Y. Polymer solar cells. Nature Photonics , 2012, 6(3): 153–161 doi: 10.1038/nphoton.2012.11
|
| 5 |
Chung I, Lee B, He J, Chang R P H, Kanatzidis M G. All-solid-state dye-sensitized solar cells with high efficiency. Nature , 2012, 485(7399): 486–489 doi: 10.1038/nature11067 pmid:22622574
|
| 6 |
Debnath R, Bakr O, Sargent E H. Solution-processed colloidal quantum dot photovoltaics: a perspective. Energy & Environmental Science , 2011, 4(12): 4870-4881 doi: 10.1039/c1ee02279b
|
| 7 |
Kramer I J, Sargent E H. Colloidal quantum dot photovoltaics: a path forward. ACS Nano , 2011, 5(11): 8506–8514 doi: 10.1021/nn203438u pmid:21967723
|
| 8 |
Tang J, Sargent E H. Infrared colloidal quantum dots for photovoltaics: fundamentals and recent progress. Advanced Materials (Deerfield Beach, Fla.) , 2011, 23(1): 12–29 doi: 10.1002/adma.201001491 pmid:20842658
|
| 9 |
Hines M A, Scholes G D. Colloidal PbS nanocrystals with size-tunable near-infrared emission: Observation of post-synthesis self-narrowing of the particle size distribution. Advanced Materials (Deerfield Beach, Fla.) , 2003, 15(21): 1844–1849 doi: 10.1002/adma.200305395
|
| 10 |
Henry C H. Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells. Journal of Applied Physics , 1980, 51(8): 4494-4500 doi: 10.1063/1.328272
|
| 11 |
Wise F W. Lead salt quantum dots: the limit of strong quantum confinement. Accounts of Chemical Research , 2000, 33(11): 773–780 doi: 10.1021/ar970220q pmid:11087314
|
| 12 |
Brown A S, Green M A. Detailed balance limit for the series constrained two terminal tandem solar cell. Physica E, Low-Dimensional Systems and Nanostructures , 2002, 14(1-2): 96–100 doi: 10.1016/S1386-9477(02)00364-8
|
| 13 |
Nozik A J, Beard M C, Luther J M, Law M, Ellingson R J, Johnson J C. Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chemical Reviews , 2010, 110(11): 6873–6890 doi: 10.1021/cr900289f pmid:20945911
|
| 14 |
McDaniel H, Heil P E, Tsai C L, Kim K K, Shim M. Integration of type II nanorod heterostructures into photovoltaics. ACS Nano , 2011, 5(9): 7677–7683 doi: 10.1021/nn2029988 pmid:21866952
|
| 15 |
Johnston K W, Pattantyus-Abraham A G, Clifford J P, Myrskog S H, MacNeil D D, Levina L, Sargent E H. Schottky-quantum dot photovoltaics for efficient infrared power conversion. Applied Physics Letters , 2008, 92(15): 151115 doi: 10.1063/1.2912340
|
| 16 |
Luther J M, Law M, Beard M C, Song Q, Reese M O, Ellingson R J, Nozik A J. Schottky solar cells based on colloidal nanocrystal films. Nano Letters , 2008, 8(10): 3488–3492 doi: 10.1021/nl802476m pmid:18729414
|
| 17 |
Leschkies K S, Beatty T J, Kang M S, Norris D J, Aydil E S. Solar cells based on junctions between colloidal PbSe nanocrystals and thin ZnO films. ACS Nano , 2009, 3(11): 3638–3648 doi: 10.1021/nn901139d pmid:19842707
|
| 18 |
Barkhouse D A, Debnath R, Kramer I J, Zhitomirsky D, Pattantyus-Abraham A G, Levina L, Etgar L, Gr?tzel M, Sargent E H. Depleted bulk heterojunction colloidal quantum dot photovoltaics. Advanced Materials (Deerfield Beach, Fla.) , 2011, 23(28): 3134–3138 doi: 10.1002/adma.201101065 pmid:21618294
|
| 19 |
Kramer I J, Zhitomirsky D, Bass J D, Rice P M, Topuria T, Krupp L, Thon S M, Ip A H, Debnath R, Kim H C, Sargent E H. Ordered nanopillar structured electrodes for depleted bulk heterojunction colloidal quantum dot solar cells. Advanced Materials (Deerfield Beach, Fla.) , 2012, 24(17): 2315–2319 doi: 10.1002/adma.201104832 pmid:22467240
|
| 20 |
Rath A K, Bernechea M, Martinez L, Konstantatos G. Solution-processed heterojunction solar cells based on p-type PbS quantum dots and n-type Bi2 S3 nanocrystals. Advanced Materials (Deerfield Beach, Fla.) , 2011, 23(32): 3712–3717 doi: 10.1002/adma.201101399 pmid:21732560
|
| 21 |
Rath A K, Bernechea M, Martinez L, de Arquer F P G, Osmond J, Konstantatos G. Solution-processed inorganic bulk nano-heterojunctions and their application to solar cells. Nature Photonics , 2012, 6(8): 529–534 doi: 10.1038/nphoton.2012.139
|
| 22 |
Xu F, Ma X, Haughn C R, Benavides J, Doty M F, Cloutier S G. Efficient exciton funneling in cascaded PbS quantum dot superstructures. ACS Nano , 2011, 5(12): 9950–9957 doi: 10.1021/nn203728t pmid:22085035
|
| 23 |
Kramer I J, Levina L, Debnath R, Zhitomirsky D, Sargent E H. Solar cells using quantum funnels. Nano Letters . 2011, 11(9):3701-6 doi: 10.1021/nl201682h
|
| 24 |
Liu H, Tang J, Kramer I J, Debnath R, Koleilat G I, Wang X, Fisher A, Li R, Brzozowski L, Levina L, Sargent E H. Electron acceptor materials engineering in colloidal quantum dot solar cells. Advanced Materials (Deerfield Beach, Fla.) , 2011, 23(33): 3832–3837 pmid:21766353
|
| 25 |
Gao J, Luther J M, Semonin O E, Ellingson R J, Nozik A J, Beard M C. Quantum dot size dependent J-V characteristics in heterojunction ZnO/PbS quantum dot solar cells. Nano Letters , 2011, 11(3): 1002–1008 doi: 10.1021/nl103814g pmid:21291196
|
| 26 |
Gao J, Perkins C L, Luther J M, Hanna M C, Chen H Y, Semonin O E, Nozik A J, Ellingson R J, Beard M C. n-type transition metal oxide as a hole extraction layer in PbS quantum dot solar cells. Nano Letters , 2011, 11(8): 3263–3266 doi: 10.1021/nl2015729 pmid:21688813
|
| 27 |
Brown P R, Lunt R R, Zhao N, Osedach T P, Wanger D D, Chang L Y, Bawendi M G, Bulovi? V. Improved current extraction from ZnO/PbS quantum dot heterojunction photovoltaics using a MoO3 interfacial layer. Nano Letters , 2011, 11(7): 2955–2961 doi: 10.1021/nl201472u pmid:21661734
|
| 28 |
Jeong K S, Tang J, Liu H, Kim J, Schaefer A W, Kemp K, Levina L, Wang X, Hoogland S, Debnath R, Brzozowski L, Sargent E H, Asbury J B. Enhanced mobility-lifetime products in PbS colloidal quantum dot photovoltaics. ACS Nano , 2012, 6(1): 89–99 doi: 10.1021/nn2039164 pmid:22168594
|
| 29 |
Klem E J D, Gregory C W, Cunningham G B, Hall S, Temple D S, Lewis J S. Planar PbS quantum dot/C60 heterojunction photovoltaic devices with 5.2% power conversion efficiency. Applied Physics Letters , 2012, 100(17): 173109 doi: 10.1063/1.4707377
|
| 30 |
Tang J, Kemp K W, Hoogland S, Jeong K S, Liu H, Levina L, Furukawa M, Wang X, Debnath R, Cha D, Chou K W, Fischer A, Amassian A, Asbury J B, Sargent E H. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nature Materials , 2011, 10(10): 765–771 doi: 10.1038/nmat3118 pmid:21927006
|
| 31 |
Sargent E H. Infrared photovoltaics made by solution processing. Nature Photonics , 2009, 3(6): 325–331 doi: 10.1038/nphoton.2009.89
|
| 32 |
Wang X, Koleilat G I, Tang J, Liu H, Kramer I J, Debnath R, Brzozowski L, Barkhouse D A R, Levina L, Hoogland S, Sargent E H. Tandem colloidal quantum dot solar cells employing a graded recombination layer. Nature Photonics , 2011, 5(8): 480–484 doi: 10.1038/nphoton.2011.123
|
| 33 |
Choi J J, Wenger W N, Hoffman R S, Lim Y F, Luria J, Jasieniak J, Marohn J A, Hanrath T. Solution-processed nanocrystal quantum dot tandem solar cells. Advanced Materials (Deerfield Beach, Fla.) , 2011, 23(28): 3144–3148 doi: 10.1002/adma.201100723 pmid:21638347
|
| 34 |
Koleilat G I, Wang X, Sargent E H. Graded recombination layers for multijunction photovoltaics. Nano Letters , 2012, 12(6): 3043–3049 doi: 10.1021/nl300891h pmid:22554234
|
| 35 |
Tang J, Wang X, Brzozowski L, Barkhouse D A R, Debnath R, Levina L, Sargent E H. Schottky quantum dot solar cells stable in air under solar illumination. Advanced Materials (Deerfield Beach, Fla.) , 2010, 22(12): 1398–1402 doi: 10.1002/adma.200903240 pmid:20437490
|
| 36 |
Tang J, Brzozowski L, Barkhouse D A R, Wang X, Debnath R, Wolowiec R, Palmiano E, Levina L, Pattantyus-Abraham A G, Jamakosmanovic D, Sargent E H. Quantum dot photovoltaics in the extreme quantum confinement regime: the surface-chemical origins of exceptional air- and light-stability. ACS Nano , 2010, 4(2): 869–878 doi: 10.1021/nn901564q pmid:20104859
|
| 37 |
Luther J M, Gao J, Lloyd M T, Semonin O E, Beard M C, Nozik A J. Stability assessment on a 3% bilayer PbS/ZnO quantum dot heterojunction solar cell. Advanced Materials (Deerfield Beach, Fla.) , 2010, 22(33): 3704–3707 doi: 10.1002/adma.201001148 pmid:20533423
|
| 38 |
Liu Y, Gibbs M, Perkins C L, Tolentino J, Zarghami M H, Bustamante J Jr., Law M. Robust, functional nanocrystal solids by infilling with atomic layer deposition. Nano Letters , 2011, 11(12): 5349–5355 doi: 10.1021/nl2028848 pmid:22023409
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|