Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec    2012, Vol. 5 Issue (4) : 358-370    https://doi.org/10.1007/s12200-012-0285-7
REVIEW ARTICLE
Recent development in colloidal quantum dots photovoltaics
Li PENG, Jiang TANG(), Mingqiang ZHU
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(673 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The increasing demand for sustainable and green energy supply spurred the surging research on high-efficiency, low-cost photovoltaics. Colloidal quantum dot solar cell (CQDSC) is a new type of photovoltaic device using lead chalcogenide quantum dot film as absorber materials. It not only has a potential to break the 33% Shockley-Queisser efficiency limit for single junction solar cell, but also possesses low-temperature, high-throughput solution processing. Since its first report in 2005, CQDSCs experienced rapid progress achieving a certified 7% efficiency in 2012, an averaged 1% efficiency gain per year. In this paper, we reviewed the research progress reported in the last two years. We started with background introduction and motivation for CQDSC research. We then briefly introduced the evolution history of CQDSC development as well as multiple exciton generation effect. We further focused on the latest efforts in improving the light absorption and carrier collection efficiency, including the bulk-heterojunction structure, quantum funnel concept, band alignment optimization and quantum dot passivation. Afterwards, we discussed the tandem solar cell and device stability, and concluded this article with a perspective. Hopefully, this review paper covers the major achievement in this field in year 2011–2012 and provides readers with a concise and clear understanding of recent CQDSC development.

Keywords lead sulfide      colloidal quantum dots (CQDs)      solar cells      multiple exciton generation (MEG)      atomic ligands     
Corresponding Author(s): TANG Jiang,Email:jtang@mail.hust.edu.cn   
Issue Date: 05 December 2012
 Cite this article:   
Li PENG,Jiang TANG,Mingqiang ZHU. Recent development in colloidal quantum dots photovoltaics[J]. Front Optoelec, 2012, 5(4): 358-370.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-012-0285-7
https://academic.hep.com.cn/foe/EN/Y2012/V5/I4/358
Fig.1  (a) characteristics of devices assembled from EDT- and EDT+ hydrazine (Hy)-treated 0.98 eV PbS CQDs film (the inset figure displays a false-color cross-sectional SEM of a typical device); (b) EQE peaks for 18 independent devices made with CQDs bandgaps of 0.71 eV (yellow), 0.72 eV (blue), and 0.73 eV (red), and a device with an antireflective (AR) coating (black) (reprinted from Ref. [])
Fig.2  SEM of (a) top and (b) angled side view of titania nanopillar on FTO-coated glass substrates. The scale bars are 500 nm. (c) - curves of planar and nanopillar devices showing = 5.6% for nanopillar architecture (reprinted from Ref. [])
Fig.3  Schematic of BNH device structure consisting of ITO/PbS CQDs/PbS, BiS nanocomposite /BiS nanocrystals/Ag and cross-sectional SEM image with scale bars: 200 nm (reprinted from Ref. [])
Fig.4  (a) Spatial band diagrams of ungraded, graded and antigraded CQDs solar cells; (b) schematic diagram of device cross sections; (c) detailed band alignment for TiO and PbS CQDs materials used. All color coding corresponds to larger bandgaps (more blue/violet) and smaller bandgaps (more yellow/red) (reprinted from Ref. [])
Fig.5  Schematic band diagram of DH-CQD devices at equilibrium: Zr-doped TiO shows the optimal band alignment that combines maximal charge separation with high open-voltage; and the cross-sectional SEM image of the device (reprinted from Ref. [])
Fig.6  (a) Cross-sectional SEM image of typical PbS CQDs solar cells with TMO; (b) schematic energy diagram of interfacial layers PbS/MoO deduced by the UPS data (reprinted from Ref. [])
Fig.7  (a) Schematic comparison of organic and atomic passivation strategies; (b) structure diagram and cross-sectional SEM; (c)- curve with = 0.544 V, = 0.00071 A, = 62% and = 5.1% (reprinted from Ref. [])
Fig.8  (a) Schematiccross-section of PbS CQD with organic passivation (left) based on MPA, alkanethiol, and hybrid passivation scheme (right); (b)- curves. Black diamonds are – curve for hybrid passivated device as measured by Newport. Inset: EQE curve for hybrid passivated device (reprinted from Ref. [])
Fig.9  Device structure of CQDs based tandem solar cells and energy level diagram showing HOMO and LUMO energies of each type of PbS CQDs, the Fermi levels (dashed lines) and band edges of isolated GRL materials (reprinted from Ref. [])
1 Jackson P, Hariskos D, Lotter E, Paetel S, Wuerz R, Menner R, Wischmann W, Powalla M. New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%. Progress in Photovoltaics: Research and Applications , 2011, 19(7): 894–897
doi: 10.1002/pip.1078
2 Semonin O E, Luther J M, Choi S, Chen H Y, Gao J, Nozik A J, Beard M C. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science , 2011, 334(6062): 1530–1533
doi: 10.1126/science.1209845 pmid:22174246
3 Ip A H, Thon S M, Hoogland S, Voznyy O, Zhitomirsky D, Debnath R, Levina L, Rollny L R, Carey G H, Fischer A, Kemp K W, Kramer I J, Ning Z, Labelle A J, Chou K W, Amassian A, Sargent E H. Hybrid passivated colloidal quantum dot solids. Nature Nanotechnology , 2012, 7: 577- 582
doi: 10.1038/nnano.2012.127
4 Li G, Zhu R, Yang Y. Polymer solar cells. Nature Photonics , 2012, 6(3): 153–161
doi: 10.1038/nphoton.2012.11
5 Chung I, Lee B, He J, Chang R P H, Kanatzidis M G. All-solid-state dye-sensitized solar cells with high efficiency. Nature , 2012, 485(7399): 486–489
doi: 10.1038/nature11067 pmid:22622574
6 Debnath R, Bakr O, Sargent E H. Solution-processed colloidal quantum dot photovoltaics: a perspective. Energy & Environmental Science , 2011, 4(12): 4870-4881
doi: 10.1039/c1ee02279b
7 Kramer I J, Sargent E H. Colloidal quantum dot photovoltaics: a path forward. ACS Nano , 2011, 5(11): 8506–8514
doi: 10.1021/nn203438u pmid:21967723
8 Tang J, Sargent E H. Infrared colloidal quantum dots for photovoltaics: fundamentals and recent progress. Advanced Materials (Deerfield Beach, Fla.) , 2011, 23(1): 12–29
doi: 10.1002/adma.201001491 pmid:20842658
9 Hines M A, Scholes G D. Colloidal PbS nanocrystals with size-tunable near-infrared emission: Observation of post-synthesis self-narrowing of the particle size distribution. Advanced Materials (Deerfield Beach, Fla.) , 2003, 15(21): 1844–1849
doi: 10.1002/adma.200305395
10 Henry C H. Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells. Journal of Applied Physics , 1980, 51(8): 4494-4500
doi: 10.1063/1.328272
11 Wise F W. Lead salt quantum dots: the limit of strong quantum confinement. Accounts of Chemical Research , 2000, 33(11): 773–780
doi: 10.1021/ar970220q pmid:11087314
12 Brown A S, Green M A. Detailed balance limit for the series constrained two terminal tandem solar cell. Physica E, Low-Dimensional Systems and Nanostructures , 2002, 14(1-2): 96–100
doi: 10.1016/S1386-9477(02)00364-8
13 Nozik A J, Beard M C, Luther J M, Law M, Ellingson R J, Johnson J C. Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chemical Reviews , 2010, 110(11): 6873–6890
doi: 10.1021/cr900289f pmid:20945911
14 McDaniel H, Heil P E, Tsai C L, Kim K K, Shim M. Integration of type II nanorod heterostructures into photovoltaics. ACS Nano , 2011, 5(9): 7677–7683
doi: 10.1021/nn2029988 pmid:21866952
15 Johnston K W, Pattantyus-Abraham A G, Clifford J P, Myrskog S H, MacNeil D D, Levina L, Sargent E H. Schottky-quantum dot photovoltaics for efficient infrared power conversion. Applied Physics Letters , 2008, 92(15): 151115
doi: 10.1063/1.2912340
16 Luther J M, Law M, Beard M C, Song Q, Reese M O, Ellingson R J, Nozik A J. Schottky solar cells based on colloidal nanocrystal films. Nano Letters , 2008, 8(10): 3488–3492
doi: 10.1021/nl802476m pmid:18729414
17 Leschkies K S, Beatty T J, Kang M S, Norris D J, Aydil E S. Solar cells based on junctions between colloidal PbSe nanocrystals and thin ZnO films. ACS Nano , 2009, 3(11): 3638–3648
doi: 10.1021/nn901139d pmid:19842707
18 Barkhouse D A, Debnath R, Kramer I J, Zhitomirsky D, Pattantyus-Abraham A G, Levina L, Etgar L, Gr?tzel M, Sargent E H. Depleted bulk heterojunction colloidal quantum dot photovoltaics. Advanced Materials (Deerfield Beach, Fla.) , 2011, 23(28): 3134–3138
doi: 10.1002/adma.201101065 pmid:21618294
19 Kramer I J, Zhitomirsky D, Bass J D, Rice P M, Topuria T, Krupp L, Thon S M, Ip A H, Debnath R, Kim H C, Sargent E H. Ordered nanopillar structured electrodes for depleted bulk heterojunction colloidal quantum dot solar cells. Advanced Materials (Deerfield Beach, Fla.) , 2012, 24(17): 2315–2319
doi: 10.1002/adma.201104832 pmid:22467240
20 Rath A K, Bernechea M, Martinez L, Konstantatos G. Solution-processed heterojunction solar cells based on p-type PbS quantum dots and n-type Bi2 S3 nanocrystals. Advanced Materials (Deerfield Beach, Fla.) , 2011, 23(32): 3712–3717
doi: 10.1002/adma.201101399 pmid:21732560
21 Rath A K, Bernechea M, Martinez L, de Arquer F P G, Osmond J, Konstantatos G. Solution-processed inorganic bulk nano-heterojunctions and their application to solar cells. Nature Photonics , 2012, 6(8): 529–534
doi: 10.1038/nphoton.2012.139
22 Xu F, Ma X, Haughn C R, Benavides J, Doty M F, Cloutier S G. Efficient exciton funneling in cascaded PbS quantum dot superstructures. ACS Nano , 2011, 5(12): 9950–9957
doi: 10.1021/nn203728t pmid:22085035
23 Kramer I J, Levina L, Debnath R, Zhitomirsky D, Sargent E H. Solar cells using quantum funnels. Nano Letters . 2011, 11(9):3701-6
doi: 10.1021/nl201682h
24 Liu H, Tang J, Kramer I J, Debnath R, Koleilat G I, Wang X, Fisher A, Li R, Brzozowski L, Levina L, Sargent E H. Electron acceptor materials engineering in colloidal quantum dot solar cells. Advanced Materials (Deerfield Beach, Fla.) , 2011, 23(33): 3832–3837
pmid:21766353
25 Gao J, Luther J M, Semonin O E, Ellingson R J, Nozik A J, Beard M C. Quantum dot size dependent J-V characteristics in heterojunction ZnO/PbS quantum dot solar cells. Nano Letters , 2011, 11(3): 1002–1008
doi: 10.1021/nl103814g pmid:21291196
26 Gao J, Perkins C L, Luther J M, Hanna M C, Chen H Y, Semonin O E, Nozik A J, Ellingson R J, Beard M C. n-type transition metal oxide as a hole extraction layer in PbS quantum dot solar cells. Nano Letters , 2011, 11(8): 3263–3266
doi: 10.1021/nl2015729 pmid:21688813
27 Brown P R, Lunt R R, Zhao N, Osedach T P, Wanger D D, Chang L Y, Bawendi M G, Bulovi? V. Improved current extraction from ZnO/PbS quantum dot heterojunction photovoltaics using a MoO3 interfacial layer. Nano Letters , 2011, 11(7): 2955–2961
doi: 10.1021/nl201472u pmid:21661734
28 Jeong K S, Tang J, Liu H, Kim J, Schaefer A W, Kemp K, Levina L, Wang X, Hoogland S, Debnath R, Brzozowski L, Sargent E H, Asbury J B. Enhanced mobility-lifetime products in PbS colloidal quantum dot photovoltaics. ACS Nano , 2012, 6(1): 89–99
doi: 10.1021/nn2039164 pmid:22168594
29 Klem E J D, Gregory C W, Cunningham G B, Hall S, Temple D S, Lewis J S. Planar PbS quantum dot/C60 heterojunction photovoltaic devices with 5.2% power conversion efficiency. Applied Physics Letters , 2012, 100(17): 173109
doi: 10.1063/1.4707377
30 Tang J, Kemp K W, Hoogland S, Jeong K S, Liu H, Levina L, Furukawa M, Wang X, Debnath R, Cha D, Chou K W, Fischer A, Amassian A, Asbury J B, Sargent E H. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nature Materials , 2011, 10(10): 765–771
doi: 10.1038/nmat3118 pmid:21927006
31 Sargent E H. Infrared photovoltaics made by solution processing. Nature Photonics , 2009, 3(6): 325–331
doi: 10.1038/nphoton.2009.89
32 Wang X, Koleilat G I, Tang J, Liu H, Kramer I J, Debnath R, Brzozowski L, Barkhouse D A R, Levina L, Hoogland S, Sargent E H. Tandem colloidal quantum dot solar cells employing a graded recombination layer. Nature Photonics , 2011, 5(8): 480–484
doi: 10.1038/nphoton.2011.123
33 Choi J J, Wenger W N, Hoffman R S, Lim Y F, Luria J, Jasieniak J, Marohn J A, Hanrath T. Solution-processed nanocrystal quantum dot tandem solar cells. Advanced Materials (Deerfield Beach, Fla.) , 2011, 23(28): 3144–3148
doi: 10.1002/adma.201100723 pmid:21638347
34 Koleilat G I, Wang X, Sargent E H. Graded recombination layers for multijunction photovoltaics. Nano Letters , 2012, 12(6): 3043–3049
doi: 10.1021/nl300891h pmid:22554234
35 Tang J, Wang X, Brzozowski L, Barkhouse D A R, Debnath R, Levina L, Sargent E H. Schottky quantum dot solar cells stable in air under solar illumination. Advanced Materials (Deerfield Beach, Fla.) , 2010, 22(12): 1398–1402
doi: 10.1002/adma.200903240 pmid:20437490
36 Tang J, Brzozowski L, Barkhouse D A R, Wang X, Debnath R, Wolowiec R, Palmiano E, Levina L, Pattantyus-Abraham A G, Jamakosmanovic D, Sargent E H. Quantum dot photovoltaics in the extreme quantum confinement regime: the surface-chemical origins of exceptional air- and light-stability. ACS Nano , 2010, 4(2): 869–878
doi: 10.1021/nn901564q pmid:20104859
37 Luther J M, Gao J, Lloyd M T, Semonin O E, Beard M C, Nozik A J. Stability assessment on a 3% bilayer PbS/ZnO quantum dot heterojunction solar cell. Advanced Materials (Deerfield Beach, Fla.) , 2010, 22(33): 3704–3707
doi: 10.1002/adma.201001148 pmid:20533423
38 Liu Y, Gibbs M, Perkins C L, Tolentino J, Zarghami M H, Bustamante J Jr., Law M. Robust, functional nanocrystal solids by infilling with atomic layer deposition. Nano Letters , 2011, 11(12): 5349–5355
doi: 10.1021/nl2028848 pmid:22023409
[1] Rashad F. KAHWAGI, Sean T. THORNTON, Ben SMITH, Ghada I. KOLEILAT. Dimensionality engineering of metal halide perovskites[J]. Front. Optoelectron., 2020, 13(3): 196-224.
[2] Zhining WAN, Mi XU, Zhengyang FU, Da LI, Anyi MEI, Yue HU, Yaoguang RONG, Hongwei HAN. Screen printing process control for coating high throughput titanium dioxide films toward printable mesoscopic perovskite solar cells[J]. Front. Optoelectron., 2019, 12(4): 344-351.
[3] Ru GE, Fei QIN, Lin HU, Sixing XIONG, Yinhua ZHOU. High fill factor over 82% enabled by a biguanide doping electron transporting layer in planar perovskite solar cells[J]. Front. Optoelectron., 2018, 11(4): 360-366.
[4] Xiaofan ZHANG, Man LIU, Weiqian KONG, Hongbo FAN. Recent advances in solar cells and photo-electrochemical water splitting by scanning electrochemical microscopy[J]. Front. Optoelectron., 2018, 11(4): 333-347.
[5] Tao YUAN, Zhonghuan CAO, Guoli TU. Indium tin oxide-free inverted polymer solar cells with ultrathin metal transparent electrodes[J]. Front. Optoelectron., 2017, 10(4): 402-408.
[6] Yinan ZHANG,Min GU. Plasmonic light trapping for wavelength-scale silicon solar absorbers[J]. Front. Optoelectron., 2016, 9(2): 277-282.
[7] Yuanyuan ZHOU,Hector F. GARCES,Nitin P. PADTURE. Challenges in the ambient Raman spectroscopy characterization of methylammonium lead triiodide perovskite thin films[J]. Front. Optoelectron., 2016, 9(1): 81-86.
[8] Xiaoyu ZHANG,Michael Grätzel,Jianli HUA. Donor design and modification strategies of metal-free sensitizers for highly-efficient n-type dye-sensitized solar cells[J]. Front. Optoelectron., 2016, 9(1): 3-37.
[9] Jie SHI,Zhaofei CHAI,Runli TANG,Huiyang LI,Hongwei HAN,Tianyou PENG,Qianqian LI,Zhen LI. Effect of electron-withdrawing groups in conjugated bridges: molecular engineering of organic sensitizers for dye-sensitized solar cells[J]. Front. Optoelectron., 2016, 9(1): 60-70.
[10] Qingsong LEI,Jiang LI. High conductive and transparent Al doped ZnO films for a-SiGe:H thin film solar cells[J]. Front. Optoelectron., 2015, 8(3): 298-305.
[11] Yue QIAN,Rong LIU,Xiujuan JIN,Bin LIU,Xianfu WANG,Jin XU,Zhuoran WANG,Gui CHEN,Junfeng CHAO. Optimised synthesis of close packed ZnO cloth and its applications in Li-ion batteries and dye-sensitized solar cells[J]. Front. Optoelectron., 2015, 8(2): 220-228.
[12] Kunpeng MA, Xiangbin ZENG, Qingsong LEI, Junming XUE, Yanzeng WANG, Chenguang ZHAO. Texturization and rounded process of silicon wafers for heterojunction with intrinsic thin-layer solar cells[J]. Front Optoelec, 2014, 7(1): 46-52.
[13] Heng WANG, Peng XIANG, Mi XU, Guanghui LIU, Xiong LI, Zhiliang KU, Yaoguang RONG, Linfeng LIU, Min HU, Ying YANG, Hongwei HAN. High efficiency monobasal solid-state dye-sensitized solar cell with mesoporous TiO2 beads as photoanode[J]. Front Optoelec, 2013, 6(4): 413-417.
[14] Kun CAO, Mingkui WANG. Recent developments in sensitizers for mesoporous sensitized solar cells[J]. Front Optoelec, 2013, 6(4): 373-385.
[15] Yaoguang RONG, Guanghui LIU, Heng WANG, Xiong LI, Hongwei HAN. Monolithic all-solid-state dye-sensitized solar cells[J]. Front Optoelec, 2013, 6(4): 359-372.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed