Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec    2012, Vol. 5 Issue (4) : 390-394    https://doi.org/10.1007/s12200-012-0287-5
RESERACH ARTICLE
Influence of facet reflection of SOA on SOA-integrated SGDBR laser
Tan SHU1, Yonglin YU1(), Hui LV1, Dexiu Huang1, Kai SHI2, Liam BARRY2
1. Wuhan National Laboratory for Optoelectronics, College of Optoelectronic Science and Engineering, Huazhong University of Science & Technology, Wuhan 430074, China; 2. The Rince Institute, Dublin City University, Glasnevin, Dublin 9, Ireland
 Download: PDF(245 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A combined model of the transmission-line laser model (TLLM) and the digital filter approach is developed to simulate the shuttering characteristic of a semiconductor optical amplifier (SOA), which is integrated with a sampled grating distributed Bragg reflector (SGDBR) laser, to create a so called SOA-SGDBR laser. The SOA section acts as a shutter to blank the laser output during wavelength switching events. Simulated results show that the turn-on edge of the SOA blanking process will oscillate when the facet reflection of SOA is relatively high. This phenomenon is also observed by experiments.

Keywords sampled grating distributed Bragg reflector (SGDBR) laser      semiconductor optical amplifier (SOA)      transmission-line laser model (TLLM)      digital filter approach     
Corresponding Author(s): YU Yonglin,Email:yonglinyu@mail.hust.edu.cn   
Issue Date: 05 December 2012
 Cite this article:   
Tan SHU,Yonglin YU,Hui LV, et al. Influence of facet reflection of SOA on SOA-integrated SGDBR laser[J]. Front Optoelec, 2012, 5(4): 390-394.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-012-0287-5
https://academic.hep.com.cn/foe/EN/Y2012/V5/I4/390
Fig.1  Schematic of SOA-integrated SGDBR model. The active, phase and SOA sections are modeled using TLLM, while the F/RSG sections are first simulated by TMM, and then transformed into time domain via FIR
parametervalue
waveguide width2 μm
waveguide thickness0.05 μm
waveguide lossactive region3000 m-1
pssive region200 m-1
waveguide confinement factoractive region0.35
passive region0.5
effective refractive index3.23
nonradioactive linear recombination coefficient1 × 108 s-1
bimolecular recombination coefficient1 × 10-16 m3·s-1
auger recombination coefficientactive region2.5 × 10-41 m6·s-1
passive region7 × 10-41 m6·s-1
Tab.1  Simulation parameters
Fig.2  SOA gain versus with bias current of SOA section
Fig.3  SOA shuttering curve from 120 to 0 mA when facet reflection is (a) 10 and (b) 10
Fig.4  SOA switching curve from 160 to 0 mA when facet reflection is (a) 10 and (b) 10
Fig.5  Output power at facet of FSG (a) and SOA (b) when facet reflection is 10
Fig.6  Experimental set-up of wavelength switching and SOA blanking
Fig.7  Measured result of evolution of SOA blanking, bias current of SOA section is switched between 140 and 0 mA
1 Buus J, Murphy E J. Tunable lasers in optical networks. IEEE Journal of Lightwave Technology , 2006, 24(1): 5–11
doi: 10.1109/JLT.2005.859839
2 Coldren L A, Fish G, Akulova Y, Barton J S, Johansson L, Coldren C W. Tunable semiconductor lasers: a tutorial. IEEE Journal of Lightwave Technology , 2004, 22(1): 193–202
doi: 10.1109/JLT.2003.822207
3 Ponnampalam L, Barlow R, Whitbread N D, Robbins D J, Busico G, Duck J P, Ward A J. Reid D C J, Williams P J. Dynamic control of wavelength switching and shuttering operations in a broadband tunable DS-DBR laser module. In: Proceedings of Optical Fiber Communication Conference Technical Digest , 2005, OTuE3
4 Lv H, Shu T, Yu Y L, Huang D X, Dong L, Zhang R K. Fast power control and wavelength switching in a tunable SOA-integrated SGDBR laser. In: Proceedings of the 14th OptoElectronics and Communications Conference , 2009, ThPD4
5 Ward A J, Robbins D J, Busico G, Barton E, Ponnampalam L, Duck J P, Whitbread N D, Williams P J, Reid D C J, Carter A C, Wale M J. Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance. IEEE Journal on Selected Topics in Quantum Electronics , 2005, 11(1): 149–156
doi: 10.1109/JSTQE.2004.841698
6 Lowery A J. Transmission-line modeling of semiconductor lasers: the transmission-line laser model. International Journal of Numerical Modeling: Electronic Networks, Devices and Fields , 1989, 2: 249–265
7 Li W, Huang W P, Li X. Digital filter approach for simulation of a complex integrated laser diode based on the traveling-wave model. IEEE Journal of Quantum Electronics , 2004, 40(5): 473–480
doi: 10.1109/JQE.2004.826436
8 Dong L, Zhang R K, Wang D L, Zhao S Z, Jiang S, Yu Y L, Liu S H. Modeling widely tunable sampled-grating DBR lasers using traveling-wave model with digital filter approach. IEEE Journal of Lightwave Technology , 2009, 27(15): 3181–3188
doi: 10.1109/JLT.2008.2009320
9 Lowery A J. New dynamic model for multimode chirp in DFB semiconductor lasers. IEE Proceeings , 1990, 137(10): 293–300
10 Shi K, Yu Y L, Zhang R K, Liu W, Barry L P. Static and dynamic analysis of side-mode suppression of widely tunable sampled grating DBR (SG-DBR) lasers. Optics Communications , 2009, 282(1): 81–87
doi: 10.1016/j.optcom.2008.09.069
11 Bj?rk G, Nilsson O. A new exact and efficient numerical matrix theory of complicated laser structures: properties of asymmetric phase-shifted DFB lasers. IEEE Journal of Lightwave Technology , 1987, 5(1): 140–146
doi: 10.1109/JLT.1987.1075402
12 Lv H, Yu Y L, Huang D X, Shu T. A fast optical wavelength-tunable transmitter with a linear thermoelectric cooler driver. IEEE Electron Device Letters , 2009, 30(4): 353–355
doi: 10.1109/LED.2009.2013880
[1] Zhefeng HU, Jianhui XU, Min HOU. Theoretical demonstration of all-optical switchable and tunable UWB doublet pulse train generator utilizing SOA wavelength conversion and tunable time delay[J]. Front. Optoelectron., 2017, 10(2): 180-188.
[2] Michael J. CONNELLY,Lukasz KRZCZANOWICZ,Pascal MOREL,Ammar SHARAIHA,Francois LELARGE,Romain BRENOT,Siddharth JOSHI,Sophie BARBET. 40 Gb/s NRZ-DQPSK data wavelength conversion with amplitude regeneration using four-wave mixing in a quantum dash semiconductor optical amplifier[J]. Front. Optoelectron., 2016, 9(3): 341-345.
[3] Tong CAO,Xinliang ZHANG. Performance improvement by enhancing the well-barrier hole burning in a quantum well semiconductor optical amplifier[J]. Front. Optoelectron., 2016, 9(3): 353-361.
[4] Xuelin YANG,Weisheng HU. Principle and applications of semiconductor optical amplifiers-based turbo-switches[J]. Front. Optoelectron., 2016, 9(3): 346-352.
[5] Zhao WU,Yu YU,Xinliang ZHANG. Chromatic dispersion monitoring using semiconductor optical amplifier[J]. Front. Optoelectron., 2014, 7(3): 399-405.
[6] Li HUO, Qiang WANG, Yanfei XING, Caiyun LOU. Signal generation and processing at 100 Gb/s based on optical time division multiplexing[J]. Front Optoelec, 2013, 6(1): 57-66.
[7] Ehsan MOHADESRAD, Kambiz ABEDI. Proposal for modeling of tapered quantum-dot semiconductor optical amplifiers[J]. Front Optoelec, 2012, 5(4): 457-464.
[8] Hussein TALEB, Kambiz ABEDI. Homogeneous and inhomogeneous broadening effects on static and dynamic responses of quantum-dot semiconductor optical amplifiers[J]. Front Optoelec, 2012, 5(4): 445-456.
[9] Yin ZHANG, Jianji DONG, Lei LEI, Hao HE, Xinliang ZHANG. 40-Gbit/s 3-input all-optical priority encoder based on cross-gain modulation in two parallel semiconductor optical amplifiers[J]. Front Optoelec, 2012, 5(2): 195-199.
[10] Jing HUANG, Deming LIU. WDM PON using 10-Gb/s DPSK downstream and re-modulated 10-Gb/s OOK upstream based on SOA[J]. Front Optoelec Chin, 2010, 3(4): 339-342.
[11] Zigang DUAN, Wei SHI, Yan LI, Guangyue CHAI. Gain properties and optical-feedback suppression of asymmetrical curved active waveguides[J]. Front Optoelec Chin, 2009, 2(4): 379-383.
[12] Yin ZHANG, Xinliang ZHANG, Xi HUANG, Cheng CHENG. Experimental investigation on slow light via four-wave mixing in semiconductor optical amplifier[J]. Front Optoelec Chin, 2009, 2(3): 259-263.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed