Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec    2012, Vol. 5 Issue (4) : 351-357    https://doi.org/10.1007/s12200-012-0294-6
REVIEW ARTICLE
Optical fiber amplifiers for space-division multiplexing
Dagong JIA1,2,3(), Haiwei ZHANG1,2, Zhe JI1,2, Neng BAI3, Guifang LI3
1. College of Precision Instrument & Opto-electronics Engineering, Tianjin University, Tianjin 300072, China; 2. Key Laboratory of Opto-electronics Information Technology of the Ministry of Education, Tianjin 300072, China; 3. College of Optics & Photonics/CREOL&FPCE, University of Central Florida, 4000 Central Florida Boulevard, Orlando, Florida 32816-2700, USA
 Download: PDF(355 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Recently, space-division multiplexing (SDM) techniques using multi-core fiber (MCF) and few-mode fiber (FMF) have been introduced into optical fiber communication to increase transmission capacity. Two main types of optical fiber amplifiers based on the Erbium-doped fiber (EDF) and the Raman effect have been developed to amplify signals in the MCF and FMF. In this paper, we reviewed the principles and configurations of these amplifiers.

Keywords optical fiber amplifier      space-division multiplexing (SDM)      multi-core fiber (MCF)      few-mode fiber (FMF)     
Corresponding Author(s): JIA Dagong,Email:dagongjia@tju.edu.cn, li@creol.ucf.edu   
Issue Date: 05 December 2012
 Cite this article:   
Dagong JIA,Haiwei ZHANG,Zhe JI, et al. Optical fiber amplifiers for space-division multiplexing[J]. Front Optoelec, 2012, 5(4): 351-357.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-012-0294-6
https://academic.hep.com.cn/foe/EN/Y2012/V5/I4/351
Fig.1  Theoretical schematic of MM-EDFA (a) and experimental setup of MM-EDFA (b)
Fig.2  Modal gain of signal, LP and L , at 1530 nm versus the 980 nm pump power when pump is entirely confined in (a) LP, (b) LP and (c) LP
Fig.3  Experimental setup of 7-core MC-EDFA
Fig.4  Schematic of the imaging amplifier where IS is the imaging system
FM-EDFA (980)FM-EDFA (1480)FM-DRA (1455)
LP01,sLP11,sLP01,sLP11,sLP01,sLP11,s
LP01,p6.19793.19546.10713.28346.19673.3933
LP11,p4.40433.65883.47493.06033.64503.3598
LP21, p3.24473.4153
LP02, p4.57642.0441
Tab.1  Overlap integrals of normalized intensity profile (unit: 10/m)
Fig.5  Hybrid EDF-Raman amplifiers
1 Richardson D J. Applied physics. Filling the light pipe. Science , 2010, 330(6002): 327–328
doi: 10.1126/science.1191708 pmid:20947751
2 Mukasa K, Imamura K, Takahashi M, Yagi T. Development of novel fibers for telecoms application. Optical Fiber Technology , 2010, 16(6): 367–377
doi: 10.1016/j.yofte.2010.09.009
3 Imamura K, Mukasa K, Yagi T. Effective space division multiplexing by multi-core fibers. In: Proceedings of European Conference on Optical Commications , 2010, P1.09
4 Zhu B, Taunay T F, Yan M F, Fini J M, Fishteyn M, Monberg E M, Dimarcello F V. Seven-core multicore fiber transmissions for passive optical network. Optics Express , 2010, 18(11): 11117–11122
doi: 10.1364/OE.18.011117 pmid:20588970
5 Mukasa K, Imamura K, Tsuchida Y, Sugizaki R. Multi-core fibers for large capacity SDM. In: Proceedings of Optical Fiber Communication Conference , 2011, OWJ1
6 Sakaguchi J, Awaji Y, Wada N, Kanno A, Kawanishi T, Hayashi T, Taru T, Kobayashi T, Watanabe M. 109-Tb/s (7 × 97 × 172-Gb/s SDM/WDM/PDM) QPSK transmission through 16.8-km homogeneous multi-core fiber. In: Proceedings of Optical Fiber Communication Conference and Exposition , 2011, PDPB6
7 Ryf R, Randel S, Gnauck A H, Bolle C, Essiambre R J, Winzer P, Peckham D W, McCurdy A, Lingle R. Space-division multiplexing over 10-km of three-mode fiber using coherent 6 × 6 MIMO processing. In: Proceedings of the National Fiber Optic Engineers Conference and Optical Fiber Communication Conference and Exposition (OFC/NFOEC) , 2011, PDPB10
8 Thomsen B C. MIMO enabled 40 Gb/s transmission using mode division multiplexing in multimode fiber. In: Proceedings of National Fiber Communication , 2010, OThM6
9 Franz B, Suikat D, Dischler R, Buchali F, Buelow H. High speed OFDM data transmission over 5 km Gl-multimode fiber using spatial multiplexing with 2 × 4 MIMO processing. In: Proceedings of 36th European Conference and Exhibition on Optical Communication (ECOC) , 2010, Tu.3.C.4
10 Sakaguchi J, Puttnam B J, Klaus W, Awaji Y, Wada N, Kanno A, Kawanishi T, Imamura K, Inaba H, Mukasa K. Sugisaki R, Kobayashi T, Watanabe M. 19-core fiber transmission of 19 × 100 × 172-Gb/sSDM-WDM-PDM-QPSK signals at 305 Tb/s. In: Proceedings of the National Fiber Optic Engineers Conference, Optical Communication Conference and Exposition (OPF/NFOEC) , 2012, PDP5C.1
11 Zhu B, Taunay T F, Fishteyn M, Liu X, Chandrasekhar S, Yan M F, Fini J M, Monberg E M, Dimarcello F V, Abedin K, Wisk P W, Peckham D W, Dziedzic P. Space-, wavelength-, polarization-division multiplexed transmission of 56-Tb/s over a 76.8 km seven-core fiber. In: Proceedings of Optical Fiber Communication Conference (OFC) , 2011, PDPB7
12 Salsi M, Koebele C, Sperti D, Tran P, Brindel P, Mardoyan H, Bigo S, Boutin A, Verluise F, Sillard P, Bigot-Astruc M, Provost L, Cerou F, Charlet G. Transmission at 2×100-Gb/s, over two modes of 40 km long prototype few-mode fiber, using LCOS based mode multiplexer and demultiplexer. In: Proceedings of Optical Fiber Communication Conference (OFC) , 2011, PDPB9
13 Ryf R, Randel S, Gnauck A H, Bolle C, Sierra A, Mumtaz S, Esmaeelpour M, Burrows E C, Essiambre R J, Winzer P J, Peckham D W, McCurdy A H, Lingle R. Mode-division multiplexing over 96-km of few-mode fiber using coherernt 6 × 6 MIMO processing. Journal of Lightwave technology , 2012, 30(4): 521–531
14 Mears R J, Reekie L, Poole S B, Payne D N. Low-threshold tunable CW and Q-switched fiber laser operating at 1.55 μm. Electronics Letters , 1986, 22(3): 159–160
doi: 10.1049/el:19860111
15 Stacey C D, Jenkins R M, Banerji J, Banerji J, Davies A R. Demonstration of fundamental mode only propagation in highly multimode fiber for high power EDFAs. Optics Communications , 2007, 269(2): 310–314
doi: 10.1016/j.optcom.2006.08.002
16 Krummrich P M. Optical Amplifier for multimode/ multi-core transmission. In: Proceedings of Optical Fiber Communication Conference , 2012, OW1D.1
17 Krummrich P M, Petermann K. Evaluation of potential optical amplifier concepts for coherenct mode multiplexing. In: Proceedings of Optical Fiber Communication Conference , 2011, OMH5
18 Yung Y, Alam S U, Li Z, Dhar A, Giles D, Giles I, Sahu J K, Grüner-Nielsen L, Poletti F, Richardson D J. First demonstration of multimode amplifier for spatial division multiplexed transmission systems. In: Proceedings of 37th European Conference and exhibition on Optical Commications (ECOC) , 2011, Th.13.K.4
19 Yung Y, Alam S U, Li Z, Dhar A, Giles D, Giles I, Sahu J K, Poletti F, Richardson D J. Detailed study of modal gain in a multimode EDFA supporting LP01 and LP11 mode group amplification. In: Proceedings of Optical Fiber Communication Conference , 2012, OM3C.4
20 Bai N, Ip E, Wang T, Li G F.Multimode fiber amplifier with tunable modal gain using a reconfigurable multimode pump. Optics Express , 2011, 19(17): 16601–16611
21 Ip E, Bai N, Huang Y K, Mateo E, Yaman F, Bickham S, Tam H Y, Lu C, Li M J, Ten S, Alan P T L, Tse V, Peng G D, Montero C, Prieto X, Li G. 88 ′ 3 ′ 112-Gb/s WDM transmission over 50 km of three-mode fiber with inline few-mode fiber amplifier. In: Proceedings of 37th European Conference and Exhibition on Optical Communication (ECOC) , 2011, Th.13.C.2
22 Abedin K S, Taunay T F, Fishteyn M, Yan M F, Zhu B, Fini J M, Monberg E M, Dimarcello F V, Wisk P W. Amplification and noise properties of an erbium-doped multicore fiber amplifier. Optics Express , 2011, 19(17): 16715–16721
23 Nykolak G, Kramer S A, Simpson J R, DiGiovanni D J, Giles C R, Presby H M. An Erbium-doped multimode optical fiber amplifier. IEEE Transactions Photonics Technology Letters , 1991, 3(12): 1079–1081
24 Bai N, Ip E, Huang Y K, Mateo E, Yaman F, Li M J, Bickham S, Ten S, Li?ares J, Montero C, Moreno V, Prieto X, Tse V, Chung K M, Lau A P T, Tam H Y, Lu C, Luo Y H, Peng G D, Li G F, Wang T. Mode-division multiplexed transmission with inline few-mode fiber amplifier. Optics Express , 2012, 20(3): 2668–2680
25 Ozdur I, Shu H, Bass M, Li G F. Think outside the fiber: imaging amplifier for space-multiplexed optical transmission. IEEE Photonics Journal , 2012, 4(5): 1316–1324
doi: 10.1109/JPHOT.2012.2208184
26 Ryf R, Sierra A, Essiambre R J, Randel S, Gnauck A H, Bolle C, Esmaeelpour M, Winzer P J, Delbue R, Pupalaikise P, Sureka A, Peckham W, McCurdy A, Lingle R Jr. Mode-equalized distributed Raman amplification in 137-km few-mode fiber. In: Proceedings of European Conference and Exposition on Optical Communications (ECOC) , 2011, Th.13.K.5
27 Bromage J. Raman amplifier for fiber communication systems. Journal of Lightwave Technology , 2004, 22(1): 79–93
doi: 10.1109/JLT.2003.822828
28 Ryf R, Essiambre R, von Hoyningen-Huene J, Winzer P. Analysis of mode-dependent gain in Raman amplified few-mode fiber. In: Proceedings of Optical Fiber Communication Conference (OFC) , 2012, OW1D
[1] Christian CARBONI,Guifang LI. Novel applications of space-division multiplexing[J]. Front. Optoelectron., 2016, 9(2): 270-276.
[2] Ming LUO,Qi MO,Xiang LI,Rong HU,Ying QIU,Cai LI,Zhijian LIU,Wu LIU,Huang YU,Wei DU,Jing XU,Zhixue HE,Qi YANG,Shaohua YU. Transmission of 200 Tb/s (375 × 3 × 178.125 Gb/s) PDM-DFTS-OFDM-32QAM super channel over 1 km FMF[J]. Front. Optoelectron., 2015, 8(4): 394-401.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed