Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec    2013, Vol. 6 Issue (2) : 167-174    https://doi.org/10.1007/s12200-013-0306-1
RESEARCH ARTICLE
High precision mode of subaperture stitching for optical surfaces measurement
Huijing ZHANG1, Haobo CHENG1(), Hon Yuen TAM2, Yongfu WEN1, Dongmei ZHOU1
1. School of Optoelectronics, Beijing Institute of Technology, Beijing 100081, China; 2. Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong, China
 Download: PDF(549 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Subaperture stitching (SAS) provides us with an attractive way of extending the effective aperture and dynamic range of phase measuring interferometers. Accuracy of stitching algorithm becomes the key factor in the SAS technology. In this paper, the basic principle of SAS was introduced and four modes of SAS were discussed. The stitching experiments were done through the SSI-300 workstation designed and developed independently. There were several comparisons between the four different stitching methods and the measurement of full aperture. The results suggest that the global error averaging mode with reference of subaperture near optic axis is of high precision.

Keywords optical testing      subaperture stitching (SAS)      algorithm      stitching mode     
Corresponding Author(s): CHENG Haobo,Email:chenghaobo@tsinghua.org.cn   
Issue Date: 05 June 2013
 Cite this article:   
Huijing ZHANG,Haobo CHENG,Hon Yuen TAM, et al. High precision mode of subaperture stitching for optical surfaces measurement[J]. Front Optoelec, 2013, 6(2): 167-174.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-013-0306-1
https://academic.hep.com.cn/foe/EN/Y2013/V6/I2/167
Fig.1  Two circular stitching schematic diagram
Fig.2  SSI-300 structure
Fig.3  Location of five subapertures
Fig.4  Stitching results of five subapertures and single point figures in different stitching modes
modePVRMSΔPVΔRMSsingle point RMS
serial mode0.6194000.1466590.0432310.0007700.007130
parallel mode0.6198100.1463030.0436400.0004140.002425
partial error averaging mode0.6218200.1459470.0456500.0000590.002428
global error averaging mode0.6287180.1456850.0525490.0002040.002507
Tab.1  Stitching precision of five subapertures (:)
Fig.5  Dividing method of nine subapertures
Fig.6  Stitching results of nine subaperture and single point figures in different modes
ModePVRMSΔPVΔRMSsingle point RMS
serial mode0.9207890.2218890.0565350.0057950.023636
parallel mode0.9206020.2279610.0563480.0008770.004168
partial error averaging mode0.9264460.2297440.0621920.0020590.004228
global error averaging mode0.9217750.2283920.0575210.0007080.004019
Tab.2  Stitching precision of nine subapertures (:)
1 Thetford A. Optical shop testing. Malacara D, ed. John Wiley. Optics & Laser Technology , 1979 , 11(1): 55
doi: 10.1016/0030-3992(79)90068-9
2 Huxford R B. Wide-FOV head-mounted display using hybrid optics. Proceedings of the International Society for Optics and Photonics , 2004, 5249: 230-237
3 Malacara D. Optical Shop Testing. New York: John Wiley & Sons Inc, 2007
4 Martin H M, Zappellini G B, Cuerden B, Miller S M, Riccardi A, Smith B K. Deformable secondary mirrors for the LBT adaptive optics system. In: Proceedings of the International Society for Optics and Photonics . 2006, 6372
5 Haensel T, Nickel A, Schindler A. Stitching interferometry of aspherical surfaces. In: Proceedings of the International Society for Optics and Photonics . 2001, 4449
6 Shorey A B, Kordonski W, Tricard M. Magnetorheological finishing and subaperture stitching interferometry of large and lightweight optics. In: Proceedings of the International Society for Optics and Photonics . 2004, 5494
7 Murphy P E, Fleig J, Forbes G, Tricard M. High precision metrology of domes and aspheric optics. Proceedings of the International Society for Optics and Photonics , 2005, 5786: 112-121
8 Chen S Y, Li S Y, Dai Y F, Zheng Z W. Testing of large optical surfaces with subaperture stitching. Applied Optics , 2007, 46(17): 3504-3509
doi: 10.1364/AO.46.003504 pmid:.17514310
9 Thunen J G, Kwon O Y. Full aperture testing with subaperture test optics. Proceedings of the International Society for Optics and Photonics, 1983, 0351: 19-27
10 Chow W W, Lawrence G N.Method for subaperture testing interferogram reduction. Optics Letters , 1983, 8(9): 468-470
doi: 10.1364/OL.8.000468 pmid:.19718150
11 Stuhlinger T W. Subaperture optical testing: experimental verification. Proceedings of the International Society for Optics and Photonics , 1986, 0655: 350-359
12 Chen H B, Wang Y W. Research on testing technology for aspheric. Aviation Precision Manufacturing Technology , 2004, 40(4): 8-10 (in Chinese)
13 Chen H B, Wang Y W, Feng Z J, Feng Z W, Zhang R. Study on conic constant and paraxial radius of optical aspheric. Optical Technique , 2004, 30(3): 311-313,317 (in Chinese)
14 Gao Y, Tam H Y, Wen Y F, Zhang H J, Cheng H B. Measurement of optical mirror with a small-aperture interferometer. Frontiers of Optoelectronics , 2012, 5(2): 218-223
doi: 10.1007/s12200-012-0233-6.
15 Yun, Y. Research on technique of large aperture optical components test based on sub-aperture stitching. Dissertation for the Master Degree. Changchun: Changchun University of Science and Technology, 2009 (in Chinese)
16 Li X N, Zhang M Y. Study on the sub-aperture stitching interferometry for large plano-optics. Optical Technique , 2006, 32(4): 514-517 (in Chinese)
17 Chen G, Jiang S L. Large aperture optical components of stitching technique by error averaging. Opto-Electronic Engineering , 2006, 33(6): 118-120 (in Chinese)
18 Otsubo M, Okada K, Tsujiuchi J. Measurement of large plane surface shapes by connecting small-aperture interferograms. Optical Engineering , 1994, 33(2): 608-613
doi: 10.1117/12.152248.
19 Wang C X. Research on the subaperture stitching interferometry for large plano optics. Dissertation for the Master Degree . Nanjing: Nanjing University of Science and Technology, 2007 (in Chinese)
20 Yang J. Research on performance of the subaperture stitching algorithm for optical surfaces. Dissertation for the Master Degree . Changsha: National University of Defense Technology, 2008 (in Chinese)
[1] Yanjun ZHANG,Jinrui XU,Xinghu FU,Jinjun LIU,Yongsheng TIAN. Hybrid algorithm combining genetic algorithm with back propagation neural network for extracting the characteristics of multi-peak Brillouin scattering spectrum[J]. Front. Optoelectron., 2017, 10(1): 62-69.
[2] F. MAKOUEI,S. MAKOUEI. Design of temperature insensitive in vivo strain sensor using multilayer single mode optical fiber[J]. Front. Optoelectron., 2016, 9(4): 621-626.
[3] Shaosheng DAI,Zhihui DU,Haiyan XIANG,Jinsong LIU. Reconstruction algorithm of super-resolution infrared image based on human vision processing mechanism[J]. Front. Optoelectron., 2015, 8(2): 195-202.
[4] Yang LIU, Haobo CHENG, Zhichao DONG, Hon-Yuen TAM. Edge effect of optical surfacing process with different data extension algorithms[J]. Front Optoelec, 2014, 7(1): 77-83.
[5] Kan YU, Juanjuan YIN, Jiaqi BAO. Reflected-intensity distribution of angle-tuned thin film filter based on frequency recursive algorithm[J]. Front Optoelec, 2013, 6(2): 175-179.
[6] Minghui YANG, Sihai CHEN, Xin WU, Wen FU, Zhangli HUANG. Identification and replacement of defective pixel based on Matlab for IR sensor[J]. Front Optoelec Chin, 2011, 4(4): 434-437.
[7] Kang YANG, Minming ZHANG, Deming LIU, Lei DENG. Design and evaluation of scheduling algorithms for TDM/WDM PON based on RSOA[J]. Front Optoelec Chin, 2011, 4(2): 217-222.
[8] Bo LV, Ming CHEN, Dan LU, Taorong GONG, Tangjun LI, Shuisheng JIAN. Novel algorithm for synthesis of fiber gratings[J]. Front Optoelec Chin, 2009, 2(3): 279-284.
[9] Yuntao HE, Yuesong JIANG, Guangda LIU. Optical synthetic aperture circle-array optimization based on genetic algorithm[J]. Front Optoelec Chin, 2008, 1(3-4): 268-273.
[10] Ping YANG, Bing XU, Wenhan JIANG, Shanqiu CHEN. A genetic algorithm used in a 61-element adaptive optical system[J]. Front Optoelec Chin, 2008, 1(3-4): 263-267.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed