Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec    2013, Vol. 6 Issue (2) : 194-198    https://doi.org/10.1007/s12200-013-0314-1
RESEARCH ARTICLE
Position dependent circuit model for thin avalanche photodiodes
Mohammad H. AKBARI, Mohsen JALALI()
School of Engineering, Shahed University, Tehran 3319118651, Iran
 Download: PDF(266 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper presents a circuit model for thin avalanche photodiodes (APDs). In this model, the nonuniformity of the electric filed in the multiplication region is modeled using a stepwise method. The model also tries to take the effects of carrier’s position dependent properties, like carrier’s dead length and the history of carrier’s previous ionization into account by developing an effective electric field in the multiplication region. The output photocurrent and multiplication gain obtained from the proposed model for different lengths of the multiplication region achieve a good agreement in comparison with available experimental data. In addition, calculated excess noise factor reveals the model ability for noise and sensitivity analysis.

Keywords avalanche photodiode (APD)      circuit modeling      multiplication gain      nonuniform electric field      excess noise factor     
Corresponding Author(s): JALALI Mohsen,Email:mjalali@shahed.ac.ir   
Issue Date: 05 June 2013
 Cite this article:   
Mohammad H. AKBARI,Mohsen JALALI. Position dependent circuit model for thin avalanche photodiodes[J]. Front Optoelec, 2013, 6(2): 194-198.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-013-0314-1
https://academic.hep.com.cn/foe/EN/Y2013/V6/I2/194
Fig.1  Schematic diagram with electric field profile of a p-i-n avalanche photodiode (PIN-APD)
Fig.2  Equivalent circuit model for avalanche photodiodes based on multiplication gain calculation. (a) Calculating () and exp [-()]; (b) calculating ; (c) output terminal of the device
symbolvalueunit
GaAsInAlAs
A3141531415μm2
αn6.01 × 1064.17 × 106cm-1
bn2.39 × 1062.09 × 106V?cm-1
cn0.9 × 1061.2 × 106
αp3.59 × 1062.65 × 106cm-1
bp2.26 × 1062.79 × 106V?cm-1
cp0.92 × 1061.07 × 106
Ni1 × 10161 × 1016cm-3
Nn5 × 10182 × 1018cm-3
Np5 × 10182 × 1018cm-3
Wi100-800100-799nm
Wn1000200nm
Wp1000300nm
Rs520?
Ls0.30.3nH
Rleak10101010?
Cs0.20.25pF
Tab.1  Parameters used in simulations
Fig.3  Multiplication gain as function of reverse bias voltage for homojunction GaAs APDs with i-region of = 100, 200 and 500 nm (solid-, dashed-, and doted-lines) compared to experimental data reported in Ref. []
Fig.4  Photocurrent as function of reverse bias voltage for homojunction InAlAs APDs with i-region of = 100, 200 and 500 nm (solid-, dashed-, and doted-lines) compared by experimental data presented in Ref. []
Fig.5  Comparison of simulation and experimental results of excess noise factor of a GaAs APDs [] for different thickness of i-region; = 100, 200, 500 and 800 nm
Fig.6  Comparison of simulation and experimental results of excess noise factor of an InAlAs APDs [8] for different thickness of i-region; = 190, 363 and 799 nm
1 Mai Y X, Wang G. Equivalent circuit modeling of separate absorption grading charge multiplication avalanche photodiode. Journal of Lightwave Technology , 27(9): 1197-1202
2 Wang G, Tokumitsu T, Hanawa I, Yoneda Y, Sato K, Kobayashi M. A time-delay equivalent-circuit model of ultrafast p-i-n photodiodes. IEEE Transactions on Microwave Theory and Techniques , 2003, 51(4): 1227-1233
3 Chen W, Liu S. PIN avalanche photodiodes model for circuit simulation. IEEE Journal of Quantum Electronics , 1996, 32(12): 2105-2111
doi: 10.1109/3.544756
4 Jou J J, Liu C K, Hsiao C M, Lin H H, Lee H C. Time-delay circuit model of high-speed pin photodiodes. IEEE Photonics Technology Letters , 2002, 14(4): 525-527
doi: 10.1109/68.992599
5 Banoushi A, Kardan M, Naeini M A. A circuit model simulation for separate absorption, grading, charge, and multiplication avalanche photodiodes. Solid-State Electronics , 2005, 49(6): 871-877
doi: 10.1016/j.sse.2005.03.014
6 Jalali M, Moravvej-Farshi M K, Masud-Panah S, Nabavi A. An equivalent lumped circuit model for thin avalanche photodiodes with nonuniform electric field profile. Journal of Lightwave Technology , 2010, 28(23): 3395-3402
7 Yuan P, Anselm K A, Hu C, Nie H, Lenox C, Holmes A L, Streetman B G, Campbell J C, McIntyre R J. A new look at impact ionization-Part II: gain and noise in short avalanche photodiodes. IEEE Transactions on Electron Devices , 1999, 46(8): 1632-1639
doi: 10.1109/16.777151
8 Saleh M A, Hayat M M, Sotirelis P P, Holmes A L, Campbell J C, Saleh B E A, Teich M C. Impact-ionization and noise characteristics of thin III-V avalanche photodiodes. IEEE Transactions on Electron Devices , 2001, 48(12): 2722-2731
doi: 10.1109/16.974696
9 Chuang S L. Physics of Optoelectronic Devices. Hoboken, New Jersey: John Wiley & Sons, 1995
10 McIntyre R J. A new look at impact ionization-Part I: a theory of gain, noise, breakdown probability, and frequency response. IEEE Transactions on Electron Devices , 1999, 46(8): 1623-1631
doi: 10.1109/16.777150
11 Goh Y L, Massey D J, Marshall A R J, Ng J S, Tan C H, Ng W K, Rees G J, Hopkinson M, David J P R, Jones S K. Avalanche multiplication in InAlAs. IEEE Transactions on Electron Devices , 2007, 54(1): 11-16
doi: 10.1109/TED.2006.887229
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed