Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec    2013, Vol. 6 Issue (2) : 146-152    https://doi.org/10.1007/s12200-013-0316-z
REVIEW ARTICLE
Optical devices based on multilayer optical waveguide
Sijun WENG, Li PEI(), Ruifeng ZHAO, Junjie YANG, Yiqun WANG
Key Lab of All Optical Network and Advanced Telecommunication Network of EMC, Beijing Jiaotong University, Beijing 100044, China
 Download: PDF(271 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Optical waveguide is used to guide the transmission of light. This paper reviews multilayer optical waveguide and some devices based on it. The optical waveguide can be divided into single-layer and multilayer optical waveguides in general. Here, multilayer cylindrical waveguide and multilayer planar waveguides were mainly focused. The analyzing method and the structures of waveguides were also demonstrated in briefly. Both these multilayer optical waveguide used in different kinds of optical devices including optical modulator, laser, optical amplifier, optical switch and special fiber were further presented. At last, the principle and structure of these multilayer optical devices were compared.

Keywords multilayer waveguide      optical devices      multilayer structure     
Corresponding Author(s): PEI Li,Email:lipei@bjtu.edu.cn   
Issue Date: 05 June 2013
 Cite this article:   
Sijun WENG,Ruifeng ZHAO,Junjie YANG, et al. Optical devices based on multilayer optical waveguide[J]. Front Optoelec, 2013, 6(2): 146-152.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-013-0316-z
https://academic.hep.com.cn/foe/EN/Y2013/V6/I2/146
Fig.1  Structure of 5-cladding fiber in cylindrical coordinate
Fig.2  Basic structure of multilayer planar waveguide
Fig.3  Four-layer uniform circular waveguide structure. ITO: indium tin oxide
Fig.4  Structure of a polymer modulator. PMMA: polymethylmethacrylate, DR1: disperse red 1
Fig.5  Schematic diagram of structure of DCF laser
Fig.6  Schematic diagram of rare earth doped DCF laser
Fig.7  Basic process of optical amplification
Fig.8  Inverted ridge waveguide
Fig.9  Structure of MZI-TO switch
Fig.10  Schematic diagram of multi-clad-fiber
Fig.11  Distribution of refractive index
1 Ma H, Jen A K Y, Dalton L R. Polymer-based optical waveguides: materials, processing, and devices. Advanced Materials , 2002, 14(19): 1339–1365
doi: 10.1002/1521-4095(20021002)14:19<1339::AID-ADMA1339>3.0.CO;2-O
2 Chen G X, Lu H M, Chen Y, Ning T G. Guangxian Tongxin Jishu Jichu. Beijing: Higher Education Press, 2010, 164–167 (in Chinese)
3 Guo Y B, Huo J Y. Fiber Lasers and Applications. Beijing: Science Press, 2008, 231–232 (in Chinese)
4 Tang T T, Wang Z H. Integrated Optics. Beijing: Science Press, 2005, 99–123 (in Chinese)
5 Wu C Q. Optical Waveguide Theory. Beijing: Tsinghua University press.,2005, 34–92 (in Chinese)
6 Kaliteevski? M A, Nikolaev V V, Abram R A. Calculation of the mode structure of multilayer optical fibers based on transfer matrices for cylindrical waves. Optics and Spectroscopy , 2000, 88(5): 792–795
doi: 10.1134/1.626880
7 Kuo C W, Chen S Y, Chen M H, Chang C F, Wu Y D. Analyzing multilayer optical waveguide with all nonlinear layers. Optics Express , 2007, 15(5): 2499–2516
doi: 10.1364/OE.15.002499 pmid:19532487
8 Kuo C W, Chen S Y, Wu Y D, Chen M H. Analyzing the multilayer optical planar waveguides with double-negative metamaterial. Progress in Electromagnetics Research , 2010, 110: 163–178
doi: 10.2528/PIER10101405
9 Wu Y D, Chen M H. Method for analyzing multilayer nonlinear optical waveguide. Optics Express , 2005, 13(20): 7982–7996
doi: 10.1364/OPEX.13.007982 pmid:19498828
10 Dong X W, Pei L, Jian W, Jian S S. A novel all-fiber electro-optic polymer modulator. Semiconductor Optoelectronics , 2003, 24(6): 409–411 (in Chinese)
11 Gao S. Analysis of properties of multi-cladding waveguide in new electro optical modulator. Dissertation for the Master Degree . Beijing: Beijing Jiaotong University, 2008, 17–35 (in Chinese)
12 Liu Z L. Study of polymer electro-optic waveguide modulators. Dissertation for the Doctoral Degree . Wuhan: Physical electronics, Huazhong University of Science & Technology, 2005, 37–41 (in Chinese)
13 Li J Y, Li S Y, Li H Q, Chen W, Liu X J, Jiang Z W. Research of microstructure double-cladding ytterbium doped fiber. Study on Optical Communications , 2005, (1): 47–50 (in Chinese) org/10.3969%2fj.issn.1005-8788.2005.01.016
14 Wu Z L, Zhao S D, Chu X C, Zhang S B, Zhang Di. Widely tunable narrow-line width large mode area Er3+/Yb3+ co-doped double-clad fiber laser. In: Proceedings of 2010 Symposium on Photonics and Optoelectronic (SOPO) . 2010, 1–4
15 Chen C. Study on Er3+-Yb3+ co-doped polymeric planar optical waveguide amplifiers fabricated on Si substrate. Dissertation for the Doctoral Degree . Changchun: Jilin University, 2010, 39–42 (in Chinese)
16 Zhang X Z. Fundamental research on polymer optical waveguide amplifier in the 1.55 μm wavelength region. Dissertation for the Doctoral Degree . Changchun: Jilin University, 2007, 85–91 (in Chinese)
17 Chen H Y, Huang C X, Li J J, Wu Y D. Research of broadband waveguide amplifier based on long-period waveguide grating and multilayer medium thin film. Journal of Yangtze University (Natural Science Edition) , 2010, 7(1): 24–26
doi: 10.3969/j.issn.1673-1409-C.2010.01.006
18 Tian H B, Yang T X, Wang Y, Yu Y X, Li S C. Analysis of burried channel Erbium-doped glass waveguide optical amplifiers. Optoelectronic Technology & Information , 2002, 15(6): 27–30 (in Chinese)
19 Coppola G, Sirleto L, Rendina I, Iodice M. Advance in thermo-optical switches: principles, materials, design, and device structure. Optical Engineering , 2011, 50 (7): 71–11 2
20 Yan Y F. Polymer/silicon planar waveguide optical switches. Dissertation for the Doctoral Degree . Changchun: Jilin University, 2012, 31–46 (in Chinese)
21 Yu H. The study of the total internal reflection optical waveguide switch. Dissertation for the Doctoral Degree . Hangzhou: Zhejiang University, 2008, 104–113 (in Chinese)
22 Chen W, Li S Y, Wang Y L, Wang D X, Luo W Y, Huang W J. Special optical fiber technology and its development trend. China New Telecommunications , 2010, 17: 85–92 (in Chinese)
23 Huang J, Huang D X, Li H. Dispersion compensation fiber in communication system. Optics & Optoelectronic Technology, 2005, 3(4): 11–12 (in Chinese)
24 Hou S L, Zhang S J, Li S P, Liu Y J, Xu Y Z. Investigation on transmission characteristics of doubly cladding fiber with an inner cladding made of negative refractive index material. Act Optica Sinica , 2011, 31(5): 52–57 (in Chinese)
25 Bao Z W, Liu Z, Liu J. Optical fibers for sensors. Optical Fiber & Electric Cable , 2000, 1: 26–33 (in Chinese)
26 Wang T Y, Pang F F, Zeng X L, Chen Z Y, Chen N. Specialty optical fibers and their components. Journal of Shanghai University , 2011, 17(4): 360–367 (Natural Science)
27 Pang F F, Liu H H, Chen N, Liu Y Q, Zeng X L, Chen Z Y, Wang T Y. Cladding mode resonance of a double cladding fiber at a near modal cut-off wavelength for RI sensing. Measurement Science & Technology , 2010, 21(9): 1–5
28 Zhen J J, Wen Y H, Qi C H, Pei L, Wei H, Ning T G, Jian S S. Theoretical and experimental investigation of fiber Bragg grating written in multilayer single mode fibers. Acta Optica Sinica , 2012, 32(10): 41–47 (in Chinese)
[1] Yuhe ZHAO, Xu WANG, Dingshan GAO, Jianji DONG, Xinliang ZHANG. On-chip programmable pulse processor employing cascaded MZI-MRR structure[J]. Front. Optoelectron., 2019, 12(2): 148-156.
[2] Ting YANG,Shasha LIAO,Li LIU,Jianji DONG. Large-range tunable fractional-order differentiator based on cascaded microring resonators[J]. Front. Optoelectron., 2016, 9(3): 399-405.
[3] Kaushik BRAHMACHARI, Mina RAY. Effect of prism material on design of surface plasmon resonance sensor by admittance loci method[J]. Front Optoelec, 2013, 6(2): 185-193.
[4] Eric CASSAN, Xavier LE ROUX, Charles CAER, Ran HAO, Damien BERNIER, Delphine MARRIS-MORINI, Laurent VIVIEN. Silicon slow light photonic crystals structures: present achievements and future trends[J]. Front Optoelec Chin, 2011, 4(3): 243-253.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed