Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec    2013, Vol. 6 Issue (2) : 199-209    https://doi.org/10.1007/s12200-013-0317-y
RESEARCH ARTICLE
SAGCM avalanche photodiode with additional layer and nonuniform electric field
Abbas GHADIMI1(), Vahid AHMADI2(), Fatemeh SHAHSHAHANI3()
1. Department of Electrical Engineering, Science and Research Branch, Islamic Azad University, Tehran 145151775, Iran; 2. Department of Electrical Engineering, Tarbiat Modares University, Tehran 14115-194, Iran; 3. Department of Physics, Alzahra University, Tehran 1993893973, Iran
 Download: PDF(448 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper presents a new method to increase the speed of the separated absorption, grading, charge, and multiplication avalanche photodiode (SAGCM-APD). This improvement is obtained by adding a new thin charge layer between absorption and grading layers, with assuming the non-uniform electric field in different regions of the structure. In addition, a circuit model of the proposed structure is extracted, using carrier rate equations. Also, to achieve the optimum structure, it is tried to have trade-offs among thickness of the layers and have proper tuning of physical parameters. Eventually, frequency and transient response are investigated and it is shown that, in comparison with the previous conventional structure, significant improvements in gain-bandwidth product, speed and also in breakdown voltage are attained.

Keywords separated absorption grading charge multiplication avalanche photodiode (SAGCM-APD)      electric field nonuniformity      additional charge layer     
Corresponding Author(s): GHADIMI Abbas,Email:ghadimi555@yahoo.com; AHMADI Vahid,Email:v_ahmadi@modares.ac.ir; SHAHSHAHANI Fatemeh,Email:f_shahshahani@alzahra.ac.ir   
Issue Date: 05 June 2013
 Cite this article:   
Abbas GHADIMI,Vahid AHMADI,Fatemeh SHAHSHAHANI. SAGCM avalanche photodiode with additional layer and nonuniform electric field[J]. Front Optoelec, 2013, 6(2): 199-209.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-013-0317-y
https://academic.hep.com.cn/foe/EN/Y2013/V6/I2/199
Fig.1  Schematic structure and electric field profile of APD
Fig.2  Electric field division with staircase approximation model
Fig.3  Circuit model of proposed structure
parametervalueparametervalue
Nn/cm-31.5×1017ap2.1×106
Nm/cm-37×1014bp1.77
Np/cm-31×1018cp1.15
Wn/nm50Ethp/eV3
Wm/nm200Ethe/eV2.8
Wp/nm50vsp/(cm?s-1)0.33×107
αn/cm-13.5×104vsn/(cm?s-1)0.67×107
αm/cm-11×104Cs/pF0.31
αp/cm-13.5×104Rs20
Tab.1  Some parameters of APD
Fig.4  Gaussian pulse response in various thicknesses of . The is 200 nm and is 60 nm
Fig.5  Step pulse response for various charge layer thicknesses ( = 200 nm, = 60 nm)
Fig.6  Inset of the curves in the zoomed region of Fig. 5
Fig.7  Bandwidth versus gain in various thicknesses of ( = 200 nm, = 60 nm)
Fig.8  Breakdown voltage based on different widths of multiplication layer
Fig.9  Changes of breakdown voltage in different thicknesses of C charge layer
1 Campbell J C. Recent advances in telecommunications avalanche photodiodes. Journal of Lightwave Technology , 2007, 25(1): 109–121
doi: 10.1109/JLT.2006.888481
2 Kasper B L, Campbell J C. Multigigbit-per-second avalanche photodiode lightwave receivers. Journal of Lightwave Technology , 1987, 5(10): 1351–1364
doi: 10.1109/JLT.1987.1075425
3 Tarof L E, Yu J, Bruce R, Knight D G, Baird T, Oosterbrink B. High-frequency performance of separate absorption and multiplication InP/InGaAs avalanche photodiodes. IEEE Photonics Technology Letters , 1993, 5(6): 672–674
doi: 10.1109/68.219706
4 Masudy-Panah S, Moravvej-Farshi M K, Jalali M. Temperature dependent characteristics of submicron GaAs avalanche photodiodes obtained by a nonlocal analysis. Journal of Optical Communications and Networking , 2009, 282(17): 3630–3636
doi: 10.1016/j.optcom.2009.05.048
5 Liew S C, Tan C H, Goh Y L, Marshall A R J, David J P R. Modeling of avalanche multiplication and excess noise factor in In0.52Al0.48As avalanche photodiodes using a simple Monte Carlo model. Journal of Applied Physics , 2008, 104(19): 13114–13119
6 Banoushi A, Ahmadi V, Setayeshi S. An analytical approach to study the effect of carrier velocities on the gain and breakdown voltage of avalanche photodiodes. Journal of Lightwave Technology , 2002, 20(4): 696–699
doi: 10.1109/50.996591
7 Ng B K, David J P R, Plimmer S A, Rees G J, Tozer R C, Hopkinson M, Hill G. Avalanche multiplication characteristics of Al0.8 Ga0.2 As diodes. IEEE Transactions on Electron Devices , 2001, 48(10): 2198–2204
doi: 10.1109/16.954454
8 Bandyopadhyay A, Deen M J, Tarof L E, Clark W A. Simplified approaches to time-domain modeling of avalanche photodiodes. IEEE Journal of Quantum Electronics , 1998, 34(4): 691–699
doi: 10.1109/3.663452
9 Chen W, Liu S. PIN avalanche photodiodes model for circuit simulation. IEEE Journal of Quantum Electronics , 1998, 32(12): 2105–2111
doi: 10.1109/3.544756
10 El-Batawy Y M, Deen M J. Modeling and optimization of resonant cavity enhanced-separated absorption graded charge multiplication-avalanche photodetector (RCE-SAGCM-APD). IEEE Transactions on Electron Devices , 2003, 50(3): 790–801
doi: 10.1109/TED.2003.811392
11 El-Batawy Y M, Deen M J. Analysis and circuit modeling of waveguide-separated absorption charge multiplication-avalanche photodetector (WG-SACM-APD). IEEE Transactions on Electron Devices , 2005, 52(3): 335–344
doi: 10.1109/TED.2005.843884
12 Banoushi A, Kardan M R, Naeini M A. A circuit model for separate absorption, grading, charge, and multiplication avalanche photodiodes. Solid-State Electronics , 2005, 49(6): 871–877
doi: 10.1016/j.sse.2005.03.014
13 Mai Y X, Wang G. Equivalent circuit modeling of separate absorption grading charge multiplication avalanche photodiode. Journal of Lightwave Technology , 2009, 27(9): 1197–1202
doi: 10.1109/JLT.2008.929121
14 Wang G, Wu J. A novel equivalent circuit model for separate absorption grading charge multiplication avalanche photodiode (APD)-based optical receiver. Journal of Lightwave Technology , 2010, 28(5): 784–790
doi: 10.1109/JLT.2009.2037594
15 Zhao Y L, Mo Q Y. An equivalent circuit model for separate absorption grading charge multiplication avalanche photodiode. Journal of Physics: Conference Series , 2011, 276(1): 012107 β
doi: 10.1088/1742-6596/276/1/012107
16 Plimmer S A, Tan C H, David J P R, Grey R, Li K F, Rees G J. The effect of an electric-field gradient on avalanche noise. Applied Physics Letters , 1999, 75(19): 2963–2965
doi: 10.1063/1.125202
17 Saleh M A, Hayat M M, Sotirelis P P, Holmes A L, Campbell J C, Saleh B E A, Teich M C. Impact-ionization and noise characteristics of thin III-V avalanche photodiodes. IEEE Transactions on Electron Devices , 2001, 48(12): 2722–2731
doi: 10.1109/16.974696
18 Goh Y L, Massey D J, Marshall A R J, Ng J S, Tan C H, Ng W K, Rees G J, Hopkinson M, David J P R, Jones S K. Avalanche multiplication in InAlAs. IEEE Transactions on Electron Devices , 2007, 54(1): 11–16
doi: 10.1109/TED.2006.887229
19 Masudy-Panah S, Ahmadi V. A closed form analytic model to study the characteristics of avalanche photodiodes. Journal of Modern Optics , 2009, 56(1): 67–72
doi: 10.1080/09500340802450607
20 Kim D S, Lee S Y, Lee J H, Oh G S, Kim N J, Lee J W, Kim A S, Sin Y K. Fabrication of planar InP/InGaAs avalanche photodiode without guard rings. In: Proceedings of IEEE Lasers and Electro-Optics Society, Annual Meeting (LEOS 96) . 1996, 332–333
21 Tan L J J, Ng J S, Tan C H, David J P R. Avalanche noise characteristics in submicron InP diodes. IEEE Journal of Quantum Electronics , 2008, 44(4): 378–382
doi: 10.1109/JQE.2007.914771
22 Tarof L E, Knight D G, Fox K E, Miner C J, Puetz N, Kim H B. Planar InP/InGaAs avalanche photodetectors with a partial charge sheet in device periphery. Applied Physics Letters , 1990, 57(7): 670–672
doi: 10.1063/1.103586
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed