|
|
|
Recent advances of optical imaging in animal stroke model |
Zhen WANG1,2( ) |
| 1. Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; 2. MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China |
|
|
|
|
Abstract Stroke is a major health concern and an intensive research subject due that it is the major cause of death and the leading cause of disability worldwide. The past three decades of clinical disappointments in treating stroke must compel us to rethink our strategy. New effective protocol for stroke could greatly benefit from the advances in optical imaging technologies. This review focuses on the latest advance of applications of three optical imaging techniques in animal model of stroke, such as photoacoustic (PA) imaging, laser speckle contrast imaging (LSCI) and two-photon microscopy (TPM). The potential roles of those techniques in the future of stroke management are also discussed.
|
| Keywords
optical imaging
photoacoustic (PA) imaging
laser speckle contrast imaging (LSCI)
two-photon microscopy (TPM)
animal model
stroke
|
|
Corresponding Author(s):
WANG Zhen,Email:zhenwang@mail.hust.edu.cn
|
|
Issue Date: 05 June 2013
|
|
| 1 |
Sims N R, Muyderman H. Mitochondria, oxidative metabolism and cell death in stroke. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease , 2010, 1802(1): 80–91 doi: 10.1016/j.bbadis.2009.09.003
|
| 2 |
Brown D L, Boden-Albala B, Langa K M, Lisabeth L D, Fair M, Smith M A, Sacco R L, Morgenstern L B. Projected costs of ischemic stroke in the United States. Neurology , 2006, 67(8): 1390–1395 doi: 10.1212/01.wnl.0000237024.16438.20 pmid:16914694
|
| 3 |
Joshi S, Agarwal S. The proposed role of optical sensing in translational stroke research. Annals of the New York Academy of Sciences , 2010, 1199(1): 149–157 doi: 10.1111/j.1749-6632.2009.05381.x pmid:20633120
|
| 4 |
Li C, Wang L V. Photoacoustic tomography and sensing in biomedicine. Physics in Medicine and Biology , 2009, 54(19): R59–R97 doi: 10.1088/0031-9155/54/19/R01 pmid:19724102
|
| 5 |
Anna Devor S S, Srinivasan V J, Yaseen M A, Nizar K, Saisan P A, Tian P, Dale A M, Vinogradov S A, Maria Angela Franceschini D A B. Frontiers in optical imaging of cerebral blood flow and metabolism. Journal of Cerebral Blood Flow and Metabolism , 2012, 32: 1259– 1276
|
| 6 |
Zhang S, Murphy T H. Imaging the impact of cortical microcirculation on synaptic structure and sensory-evoked hemodynamic responses in vivo. PLoS Biology , 2007, 5(5): e119 doi: 10.1371/journal.pbio.0050119 pmid:17456007
|
| 7 |
Grant P E, Roche-Labarbe N, Surova A, Themelis G, Selb J, Warren E K, Krishnamoorthy K S, Boas D A, Franceschini M A. Increased cerebral blood volume and oxygen consumption in neonatal brain injury. Journal of Cerebral Blood Flow and Metabolism , 2009, 29(10): 1704–1713 doi: 10.1038/jcbfm.2009.90 pmid:19675563
|
| 8 |
Mesquita R C, Durduran T, Yu G, Buckley E M, Kim M N, Zhou C, Choe R, Sunar U,Yodh A G. Direct measurement of tissue blood flow and metabolism with diffuse optics. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences , 2011, 369(1955): 4390–4406
|
| 9 |
Obrig H, Steinbrink J. Non-invasive optical imaging of stroke. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences , 2011, 369(1955): 4470–4494
|
| 10 |
Wilson K, Homan K, Emelianov S. Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging. Nature Communications , 2012, 3: 618 doi: 10.1038/ncomms1627
|
| 11 |
Wang L V. Tutorial on photoacoustic microscopy and computed tomography. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14(1): 171–179 doi: 10.1109/JSTQE.2007.913398
|
| 12 |
Wang L V. Multiscale photoacoustic microscopy and computed tomography. Nature Photonics , 2009, 3(9): 503–509 doi: 10.1038/nphoton.2009.157 pmid:20161535
|
| 13 |
Wang L V. Prospects of photoacoustic tomography. Medical Physics , 2008, 35(12): 5758–5767 doi: 10.1118/1.3013698 pmid:19175133
|
| 14 |
Hu S, Gonzales E, Soetikno B, Gong E, Yan P, Maslov K, Lee J M, Wang L V. Optical-resolution photoacoustic microscopy of ischemic stroke. In: Proceedings of SPIE, Photons Plus Ultrasound: Imaging and Sensing . 2011, 7899: 789906 doi: 10.1117/12.874366
|
| 15 |
Soetikno B, Hu S, Gonzales E, Zhong Q, Maslov K, Lee J M, Wang L V. Vessel segmentation analysis of ischemic stroke images acquired with photoacoustic microscopy. In: Proceedings of SPIE, Photons Plus Ultrasound: Imaging and Sensing . 2012, 8233: 822345 doi: 10.1117/12.911089
|
| 16 |
Deng Z L, Wang Z, Yang X Q, Luo Q M, Gong H.In vivo imaging of hemodynamics and oxygen metabolism in acute focal cerebral ischemic rats with laser speckle imaging and functional photoacoustic microscopy. Journal of Biomedical Optics , 2012, 17(8): 081415 doi: 10.1117/1.JBO.17.8.081415
|
| 17 |
Ermilov S A, Khamapirad T, Conjusteau A, Leonard M H, Lacewell R, Mehta K, Miller T, Oraevsky A A. Laser optoacoustic imaging system for detection of breast cancer. Journal of Biomedical Optics , 2009, 14(2): 024007
|
| 18 |
Esenaliev R O, Karabutov A A, Oraevsky A A. Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors. IEEE Journal of Selected Topics in Quantum Electronics, 1999, 5(4): 981–988 doi: 10.1109/2944.796320
|
| 19 |
Ku G, Wang L V. Deeply penetrating photoacoustic tomography in biological tissues enhanced with an optical contrast agent. Optics Letters , 2005, 30(5): 507–509 doi: 10.1364/OL.30.000507 pmid:15789718
|
| 20 |
Hamilton J D, O’Donnell M. High frequency ultrasound imaging with optical arrays. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 1998, 45(1): 216–235 doi: 10.1109/58.646927 pmid:18244174
|
| 21 |
Payne B P, Venugopalan V, Miki? B B, Nishioka N S. Optoacoustic tomography using time-resolved interferometric detection of surface displacement. Journal of Biomedical Optics , 2003, 8(2): 273–280 doi: 10.1117/1.1559727 pmid:12683854
|
| 22 |
Carp S A, Guerra A, Duque S Q, Venugopalan V. Optoacoustic imaging using interferometric measurement of surface displacement. Applied Physics Letters , 2004, 85(23): 5772–5774 doi: 10.1063/1.1831569
|
| 23 |
Carp S A, Venugopalan V. Optoacoustic imaging based on the interferometric measurement of surface displacement. Journal of Biomedical Optics , 1999, 12(6): 064001
|
| 24 |
Xu Y, Wang L V. Rhesus monkey brain imaging through intact skull with thermoacoustic tomography. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control , 2006, 53(3): 542–548 doi: 10.1109/TUFFC.2006.1610562 pmid:16555762
|
| 25 |
Yang X M, Wang L V. Monkey brain cortex imaging by photoacoustic tomography. Journal of Biomedical Optics , 2008, 13(4): 044009 doi: 10.1117/1.2967907
|
| 26 |
Yao J, Wang L V. Photoacoustic tomography: fundamentals, advances and prospects. Contrast Media & Molecular Imaging , 2011, 6(5): 332–345 doi: 10.1002/cmmi.443 pmid:22025335
|
| 27 |
Dunn A K. Laser speckle contrast imaging of cerebral blood flow. Annals of Biomedical Engineering , 2012, 40(2): 367–377
|
| 28 |
Song L, Elson D S. Effect of signal intensity and camera quantization on laser speckle contrast analysis. Biomedical Optics Express , 2013, 4(1): 89–104 doi: 10.1364/BOE.4.000089 pmid:23304650
|
| 29 |
He H, Tang Y, Zhou F, Wang J, Luo Q, Li P. Lateral laser speckle contrast analysis combined with line beam scanning illumination to improve the sampling depth of blood flow imaging. Optics Letters , 2012, 37(18): 3774–3776 pmid:23041855
|
| 30 |
Zhang H Y, Li P, Feng N, Qiu J, Li B, Luo W, Luo Q. Correcting the detrimental effects of nonuniform intensity distribution on fiber-transmitting laser speckle imaging of blood flow. Optics Express , 2012, 20(1): 508–517 doi: 10.1364/OE.20.000508 pmid:22274372
|
| 31 |
Song L P, Elson D S. Dual-wavelength endoscopic laser speckle contrast imaging system for indicating tissue blood flow and oxygenation. In: Proceedings of SPIE, Dynamics and Fluctuations in Biomedical Photonics IX . 2012, 8222: 822209
|
| 32 |
Lu H Y, Miao P, Liu Q, Li Y, Tong S B. Dual-modal (OIS/LSCI) imager of cerebral cortex in freely moving animals. In: Proceedings of SPIE, 10th International Conference on Photonics and Imaging in Biology and Medicine (PIBM 2011) . 2012, 8329: 83290P
|
| 33 |
Boas D A, Dunn A K. Laser speckle contrast imaging in biomedical optics. Journal of Biomedical Optics , 2010, 15(1): 011109
|
| 34 |
Parthasarathy A B, Kazmi S M, Dunn A K. Quantitative imaging of ischemic stroke through thinned skull in mice with Multi Exposure Speckle Imaging. Biomedical Optics Express , 2010, 1(1): 246– 259 doi: 10.1364/BOE.1.000246 pmid:21258462
|
| 35 |
Levy H, Ringuette D, Levi O. Rapid monitoring of cerebral ischemia dynamics using laser-based optical imaging of blood oxygenation and flow. Biomedical Optics Express , 2012, 3(4): 777–791 doi: 10.1364/BOE.3.000777 pmid:22574265
|
| 36 |
Qin J, Shi L, Dziennis S, Reif R, Wang R K. Fast synchronized dual-wavelength laser speckle imaging system for monitoring hemodynamic changes in a stroke mouse model. Optics Letters , 2012, 37(19): 4005–4007 doi: 10.1364/OL.37.004005 pmid:23027260
|
| 37 |
Wang Z, Luo W, Zhou F, Li P, Luo Q. Dynamic change of collateral flow varying with distribution of regional blood flow in acute ischemic rat cortex. Journal of Biomedical Optics , 2012, 17(12): 125001 doi: 10.1117/1.JBO.17.12.125001 pmid:23203323
|
| 38 |
Denk W, Strickler J H, Webb W W. Two-photon laser scanning fluorescence microscopy. Science (New York, NY) , 1990, 248(4951): 73–76 doi: 2321027" target="_blank">10.1126/science. pmid:2321027 pmid:2321027
|
| 39 |
Denk W, Svoboda K. Photon upmanship: techreview why multiphoton imaging is more than a gimmick. Neuron , 1997, 18: 351–357
|
| 40 |
Shih A Y, Driscoll J D, Drew P J, Nishimura N, Schaffer C B, Kleinfeld D. Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain. Journal of Cerebral Blood Flow and Metabolism , 2012, 32(7): 1277–1309 doi: 10.1038/jcbfm.2011.196 pmid:22293983
|
| 41 |
Ginsberg M D, Busto R. Rodent models of cerebral ischemia. Stroke , 1989, 20(12): 1627–1642 doi: 10.1161/01.STR.20.12.1627 pmid:2688195
|
| 42 |
K?vari E, Gold G, Herrmann F R, Canuto A, Hof P R, Bouras C, Giannakopoulos P. Cortical microinfarcts and demyelination affect cognition in cases at high risk for dementia. Neurology , 2007, 68(12): 927–931 doi: 10.1212/01.wnl.0000257094.10655.9a pmid:17372128
|
| 43 |
Suter O C, Sunthorn T, Kraftsik R, Straubel J, Darekar P, Khalili K, Miklossy J. Cerebral hypoperfusion generates cortical watershed microinfarcts in Alzheimer disease. Stroke , 2002, 33(8): 1986–1992 doi: 10.1161/01.STR.0000024523.82311.77 pmid:12154250
|
| 44 |
Hua R, Walz W. The need for animal models in small-vessel brain disease. Critical Reviews in Neurobiology , 2006, 18(1-2): 5–11 doi: 10.1615/CritRevNeurobiol.v18.i1-2.20 pmid:17725504
|
| 45 |
Mohajerani M H, Aminoltejari K, Murphy T H. Targeted mini-strokes produce changes in interhemispheric sensory signal processing that are indicative of disinhibition within minutes. Proceedings of the National Academy of Sciences of the United States of America , 2011, 108(22): E183–E191 doi: 10.1073/pnas.1101914108 pmid:21576480
|
| 46 |
Nishimura N, Schaffer C B, Friedman B, Lyden P D, Kleinfeld D. Penetrating arterioles are a bottleneck in the perfusion of neocortex. Proceedings of the National Academy of Sciences of the United States of America , 2007, 104(1): 365–370 doi: 10.1073/pnas.0609551104 pmid:17190804
|
| 47 |
Nishimura N, Schaffer C B, Friedman B, Tsai P S, Lyden P D, Kleinfeld D. Targeted insult to subsurface cortical blood vessels using ultrashort laser pulses: three models of stroke. Nature Methods , 2006, 3(2): 99–108 doi: 10.1038/nmeth844 pmid:16432519
|
| 48 |
Schaffer C B, Friedman B, Nishimura N, Schroeder L F, Tsai P S, Ebner F F, Lyden P D, Kleinfeld D. Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion. PLoS Biology , 2006, 4(2): e22 doi: 10.1371/journal.pbio.0040022 pmid:16379497
|
| 49 |
Watson B D, Dietrich W D, Busto R, Wachtel M S, Ginsberg M D. Induction of reproducible brain infarction by photochemically initiated thrombosis. Annals of Neurology , 1985, 17(5): 497–504 doi: 10.1002/ana.410170513 pmid:4004172
|
| 50 |
Brown C E, Li P, Boyd J D, Delaney K R, Murphy T H. Extensive turnover of dendritic spines and vascular remodeling in cortical tissues recovering from stroke. The Journal of Neuroscience , 2007, 27(15): 4101–4109 doi: 10.1523/JNEUROSCI.4295-06.2007 pmid:17428988
|
| 51 |
Mostany R, Portera-Cailliau C. Absence of large-scale dendritic plasticity of layer 5 pyramidal neurons in peri-infarct cortex. The Journal of Neuroscience , 2011, 31(5): 1734–1738 doi: 10.1523/JNEUROSCI.4386-10.2011 pmid:21289182
|
| 52 |
Zhang S, Boyd J, Delaney K, Murphy T H. Rapid reversible changes in dendritic spine structure in vivo gated by the degree of ischemia. The Journal of Neuroscience , 2005, 25(22): 5333–5338 doi: 10.1523/JNEUROSCI.1085-05.2005 pmid:15930381
|
| 53 |
Drew P J, Shih A Y, Driscoll J D, Knutsen P M, Blinder P, Davalos D, Akassoglou K, Tsai P S, Kleinfeld D. Chronic optical access through a polished and reinforced thinned skull. Nature Methods , 2010, 7(12): 981–984 doi: 10.1038/nmeth.1530 pmid:20966916
|
| 54 |
Davalos D, Grutzendler J, Yang G, Kim J V, Zuo Y, Jung S, Littman D R, Dustin M L, Gan W B. ATP mediates rapid microglial response to local brain injury in vivo. Nature Neuroscience , 2005, 8(6): 752–758 doi: 10.1038/nn1472 pmid:15895084
|
| 55 |
Sigler A, Murphy T H. In vivo 2-photon imaging of fine structure in the rodent brain: before, during, and after stroke. Stroke , 2010, 41(10 Suppl): S117–S123 doi: 10.1161/STROKEAHA.110.594648 pmid:20876484
|
| 56 |
Dijkhuizen R M, Ren J M, Mandeville J B, Wu O, Ozdag F M, Moskowitz M A, Rosen B R, Finklestein S P. Functional magnetic resonance imaging of reorganization in rat brain after stroke. Proceedings of the National Academy of Sciences of the United States of America , 2001, 98(22): 12766–12771 doi: 10.1073/pnas.231235598 pmid:11606760
|
| 57 |
Li P, Murphy T H. Two-photon imaging during prolonged middle cerebral artery occlusion in mice reveals recovery of dendritic structure after reperfusion. The Journal of Neuroscience , 2008, 28(46): 11970–11979 doi: 10.1523/JNEUROSCI.3724-08.2008 pmid:19005062
|
| 58 |
Murphy T H, Corbett D. Plasticity during stroke recovery: from synapse to behaviour. Nature Reviews. Neuroscience , 2009, 10(12): 861–872 doi: 10.1038/nrn2735 pmid:19888284
|
| 59 |
Brown C E, Aminoltejari K, Erb H, Winship I R, Murphy T H. In vivo voltage-sensitive dye imaging in adult mice reveals that somatosensory maps lost to stroke are replaced over weeks by new structural and functional circuits with prolonged modes of activation within both the peri-infarct zone and distant sites. The Journal of Neuroscience , 2009, 29(6): 1719–1734 doi: 10.1523/JNEUROSCI.4249-08.2009 pmid:19211879
|
| 60 |
Winship I R, Murphy T H. Remapping the somatosensory cortex after stroke: insight from imaging the synapse to network. Neuroscientist , 2009, 15(5): 507–524 doi: 10.1177/1073858409333076 pmid:19622841
|
| 61 |
Carmichael S T. Plasticity of cortical projections after stroke. Neuroscientist , 2003, 9(1): 64–75 doi: 10.1177/1073858402239592 pmid:12580341
|
| 62 |
Carmichael S T. Cellular and molecular mechanisms of neural repair after stroke: making waves. Annals of Neurology , 2006, 59(5): 735–742 doi: 10.1002/ana.20845 pmid:16634041
|
| 63 |
Coq J O, Xerri C. Acute reorganization of the forepaw representation in the rat SI cortex after focal cortical injury: neuroprotective effects of piracetam treatment. European Journal of Neuroscience , 1999, 11(8): 2597–2608 doi: 10.1046/j.1460-9568.1999.00673.x pmid:10457159
|
| 64 |
Dancause N, Barbay S, Frost S B, Plautz E J, Chen D, Zoubina E V, Stowe A M, Nudo R J. Extensive cortical rewiring after brain injury. The Journal of Neuroscience , 2005, 25(44): 10167–10179 doi: 10.1523/JNEUROSCI.3256-05.2005 pmid:16267224
|
| 65 |
Nudo R J, Milliken G W. Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys. Journal of Neurophysiology , 1996, 75(5): 2144–2149 pmid:8734610
|
| 66 |
Rouiller E M, Yu X H, Moret V, Tempini A, Wiesendanger M, Liang F. Dexterity in adult monkeys following early lesion of the motor cortical hand area: the role of cortex adjacent to the lesion. European Journal of Neuroscience , 1998, 10(2): 729–740 doi: 10.1046/j.1460-9568.1998.00075.x pmid:9749734
|
| 67 |
Castro-Alamancos M A, Borrel J. Functional recovery of forelimb response capacity after forelimb primary motor cortex damage in the rat is due to the reorganization of adjacent areas of cortex. Neuroscience , 1995, 68(3): 793–805 doi: 10.1016/0306-4522(95)00178-L pmid:8577374
|
| 68 |
Dijkhuizen R M, Singhal A B, Mandeville J B, Wu O, Halpern E F, Finklestein S P, Rosen B R, Lo E H. Correlation between brain reorganization, ischemic damage, and neurologic status after transient focal cerebral ischemia in rats: a functional magnetic resonance imaging study. The Journal of Neuroscience , 2003, 23(2): 510–517 pmid:12533611
|
| 69 |
Rossini P M, Altamura C, Ferreri F, Melgari J M, Tecchio F, Tombini M, Pasqualetti P, Vernieri F. Neuroimaging experimental studies on brain plasticity in recovery from stroke. Europa Medicophysica , 2007, 43(2): 241–254 pmid:17589415
|
| 70 |
Schaechter J D, Moore C I, Connell B D, Rosen B R, Dijkhuizen R M. Structural and functional plasticity in the somatosensory cortex of chronic stroke patients. Brain , 2006, 129(10): 2722–2733 doi: 10.1093/brain/awl214 pmid:16921177
|
| 71 |
Johnston D G, Denizet M, Mostany R, Portera-Cailliau C. Chronic in vivo imaging shows no evidence of dendritic plasticity or functional remapping in the contralesional cortex after stroke. Cerebral Cortex , 2012, doi: 10.1093/cercor/bhs092 pmid:22499800
|
| 72 |
Kleinfeld D, Mitra P P, Helmchen F, Denk W. Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex. Proceedings of the National Academy of Sciences of the United States of America , 1998, 95(26): 15741–15746 doi: 10.1073/pnas.95.26.15741 pmid:9861040
|
| 73 |
Devor A, Tian P, Nishimura N, Teng I C, Hillman E M C, Narayanan S N, Ulbert I, Boas D A, Kleinfeld D, Dale A M. Suppressed neuronal activity and concurrent arteriolar vasoconstriction may explain negative blood oxygenation level-dependent signal. The Journal of Neuroscience , 2007, 27(16): 4452–4459 doi: 10.1523/JNEUROSCI.0134-07.2007 pmid:17442830
|
| 74 |
Tian P, Teng I C, May L D, Kurz R, Lu K, Scadeng M, Hillman E M C, De Crespigny A J, D’Arceuil H E, Mandeville J B, Marota J J, Rosen B R, Liu T T, Boas D A, Buxton R B, Dale A M, Devor A. Cortical depth-specific microvascular dilation underlies laminar differences in blood oxygenation level-dependent functional MRI signal. Proceedings of the National Academy of Sciences of the United States of America , 2010, 107(34): 15246–15251 doi: 10.1073/pnas.1006735107 pmid:20696904
|
| 75 |
Kobat D, Durst M E, Nishimura N, Wong A W, Schaffer C B, Xu C. Deep tissue multiphoton microscopy using longer wavelength excitation. Optics Express , 2009, 17(16): 13354–13364 doi: 10.1364/OE.17.013354 pmid:19654740
|
| 76 |
Kirchhoff F, Debarbieux F, Kronland-martinet C, Cojocaru G, Popa-Wagner A. Combined two-photon laser-scanning microscopy and spectral microCT X-ray imaging to characterize the cellular signature and evolution of microstroke foci. Romanian Journal of Morphology and Embryology, 2012, 53(3 Suppl): 671–675
|
| 77 |
Feng G, Mellor R H, Bernstein M, Keller-Peck C, Nguyen Q T, Wallace M, Nerbonne J M, Lichtman J W, Sanes J R. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron , 2000, 28(1): 41–51 doi: 10.1016/S0896-6273(00)00084-2 pmid:11086982
|
| 78 |
Helmchen F, Fee M S, Tank D W, Denk W. A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals. Neuron , 2001, 31(6): 903–912 doi: 10.1016/S0896-6273(01)00421-4 pmid:11580892
|
| 79 |
Piyawattanametha W, Cocker E D, Burns L D, Barretto R P J, Jung J C, Ra H, Solgaard O, Schnitzer M J. In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror. Optics Letters , 2009, 34(15): 2309–2311
|
| 80 |
Risher W C, Ard D, Yuan J, Kirov S A. Recurrent spontaneous spreading depolarizations facilitate acute dendritic injury in the ischemic penumbra. The Journal of Neuroscience , 2010, 30(29): 9859–9868 doi: 10.1523/JNEUROSCI.1917-10.2010 pmid:20660268
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|