Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec    2013, Vol. 6 Issue (3) : 270-274    https://doi.org/10.1007/s12200-013-0326-x
RESEARCH ARTICLE
Influence of substrate temperature on in situ-textured ZnO thin films grown by MOCVD
Yajuan ZHENG, Xiangbin ZENG(), Xiaohu SUN, Diqiu HUANG
School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(445 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The influence of substrate temperature on microstructure, electrical and optical properties of in situ-textured zinc oxide (ZnO) films fabricated by metal organic chemical vapor deposition (MOVCD) had been investigated. Results indicated that the substrate temperature played a very important role on preparation of ZnO thin film. With the raising of temperature, firstly ZnO crystals were perpendicular to the substrate, then they were grown inclining toward the substrate, finally ZnO crystals grown in layers but not regular. Consequently, ZnO film surface morphology changed from smooth to a pyramid structure and then disappeared little by little. Moreover, it was also found in this study that ZnO film was characterized with high crystallinity, low resistivity (2.17 × 10-2) and high transmittance (>80%). These results suggested that ZnO thin film is suitable for front electrode of silicon thin film solar cell.

Keywords metal organic chemical vapor deposition (MOVCD)      in situ-textured      zinc oxide (ZnO) thin film      temperature     
Corresponding Author(s): ZENG Xiangbin,Email:eexbzeng@163.com   
Issue Date: 05 September 2013
 Cite this article:   
Yajuan ZHENG,Xiangbin ZENG,Xiaohu SUN, et al. Influence of substrate temperature on in situ-textured ZnO thin films grown by MOCVD[J]. Front Optoelec, 2013, 6(3): 270-274.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-013-0326-x
https://academic.hep.com.cn/foe/EN/Y2013/V6/I3/270
Fig.1  XRD data as function of substrate temperature
Fig.2  SEM results of ZnO thin film at different temperature. (a) 160°C; (b) 170°C; (c) 180°C; (d) 190°C
Fig.3  AFM result of ZnO film grown at 180°C
Fig.4  Resistivity (a); mobility (b); carrier concentration (c) of ZnO thin films at different substrate temperature
Fig.5  Transmittance at different temperature
1 Müller J, Rech B, Springer J, Vanecek M. TCO and light trapping in silicon thin film solar cells. Solar Energy , 2004, 77(6): 917-930
doi: 10.1016/j.solener.2004.03.015
2 Zou D C, Wang D, Chu Z Z, Lv Z B, Fan X. Fiber-shaped flexible solar cells. Coordination Chemistry Reviews , 2010, 254(9-10): 1169-1178
doi: 10.1016/j.ccr.2010.02.012
3 Dagkaldiran U, Gordijin A, Finger F, Yates H M, Evans P, Sheel D W, Remes Z, Vanecek M. Amorphous silicon solar cells made with SnO2:F TCO films deposited by atmospheric pressure CVD. Materials Science and Engineering B , 2009, 6-9: 159-160
4 Manavizadeh N, Boroumand F A, Asl-Soleimani E, Raissi F, Bagherzadeh S, Khodayari A, Rasouli M A. Influence of substrates on the structural and morphological properties of RF suppered ITO thin films for photovoltaic application. Thin Solid Films , 2009, 517(7): 2324-2327
doi: 10.1016/j.tsf.2008.11.027
5 Wang X J, Zeng X B, Huang D Q, Zhang X, Li Q. The properties of Al doped ZnO thin films deposited on various substrate materials by RF magnetron sputtering. Materials in Electronics , 2012, 23(8): 1580-1586
6 Stowell M, Muller J, Ruske M, Lutz M, Linz T. RF-superimposed DC and pulsed DC sputtering for deposition of transparent conductive oxides. Thin Solid Films , 2007, 515(19): 7654-7657
doi: 10.1016/j.tsf.2006.11.166
7 Pan M, Fenwick W E, Strassburg M, Li N, Kang H, Kane M H, Asghar A, Gupta S, Varatharajan R, Nause J, El-Zein N, Fabiano P, Steiner T, Ferguson I. Metal-organic chemical vapor deposition of ZnO. Journal of Crystal Growth , 2006, 287(2): 688-693
doi: 10.1016/j.jcrysgro.2005.10.093
8 Wang S P, Shan C X, Yao B, Li B H, Zhang J Y, Zhao D X, Shen D Z, Fan X W. Electrical and optical properties of ZnO films grown by molecular beam epitaxy. Applied Surface Science , 2009, 255(9): 4913-4915
doi: 10.1016/j.apsusc.2008.12.035
9 Al Asmar R, Ferblantier G, Sauvajol J L, Giani A, Khoury A, Foucaran A. Fabrication and characterization of high quality ZnO thin films by reactive electron beam evaporation technique. Microelectronics Journal , 2005, 36(8): 694-699
doi: 10.1016/j.mejo.2005.02.119
10 Bacaksiz E, Aksu S, Yilmaz S, Parlak M, Altunbas M. Structural, optical and electrical properties of Al-doped ZnO microrods prepared by spray pyrolysis. Thin Solid Films , 2010, 518(15): 4076-4080
doi: 10.1016/j.tsf.2009.10.141
11 Bruncko J, Vincze A, Netrvalova M. Study of ZnO layers growth by pulsed laser deposition from Zn and ZnO targets. Vacuum , 2009, 84(1): 162-165
doi: 10.1016/j.vacuum.2009.05.005
12 Kim Y S, Tai W P. Electrical and optical properties of Al-doped ZnO thin films by sol-gel process. Applied Surface Science , 2007, 253(11): 4911-4916
doi: 10.1016/j.apsusc.2006.10.068
13 Wu Y B. Deposition of ZnO and Al Depoed ZnO Films by Magnetron Sputtering and Fabrication of MSM Ultraviolet Photodetector. Dissertation for the Doctoral Degree . Xiamen: Xiamen University, 2009
[1] Yanli ZHAO, Junjie TU, Jingjing XIANG, Ke WEN, Jing XU, Yang TIAN, Qiang LI, Yuchong TIAN, Runqi WANG, Wenyang LI, Mingwei GUO, Zhifeng LIU, Qi TANG. Temperature dependence simulation and characterization for InP/InGaAs avalanche photodiodes[J]. Front. Optoelectron., 2018, 11(4): 400-406.
[2] Ran YAO,Dawei ZHANG,Bing ZOU,Jian XU. Junction temperature measurement of alternating current light-emitting-diode by threshold voltage method[J]. Front. Optoelectron., 2016, 9(4): 555-559.
[3] Weiwei ZHANG, Yiqing GAO, Xingdao HE. Boltzmann constant determined by fluorescent spectroscopy for verifying thermometers[J]. Front Optoelec, 2014, 7(1): 64-68.
[4] Diqiu HUANG, Xiangbin ZENG, Yajuan ZHENG, Xiaojin WANG, Yanyan YANG. Influence of process parameters on band gap of Al-doped ZnO film[J]. Front Optoelec, 2013, 6(1): 114-121.
[5] Youbao NI, Haixin WU, Mingsheng MAO, Chen LIN, Ganchao CHENG, Zhenyou WANG. Synthesis and growth of nonlinear infrared crystal material CdSe via seeded oriented temperature gradient solution zoning method[J]. Front Optoelec Chin, 2011, 4(2): 141-145.
[6] Jian LIU, Hao ZHANG, Bo LIU. Temperature measurement based on photonic crystal modal interferometer[J]. Front Optoelec Chin, 2010, 3(4): 418-422.
[7] Shaomin LI, Xiaoying LIU, Chong LIU. FBG sensing temperature characteristic and application in oil/gas down-hole measurement[J]. Front Optoelec Chin, 2009, 2(2): 233-238.
[8] Ziheng XU, Deming LIU, Hairong LIU, Qizhen SUN, Zhifeng SUN, Xu ZHANG, Wengang WANG. Design of distributed Raman temperature sensing system based on single-mode optical fiber[J]. Front Optoelec Chin, 2009, 2(2): 215-218.
[9] Deming LIU, Shuang LIU, Hairong LIU. Temperature performance of Raman scattering in data fiber and its application in distributed temperature fiber-optic sensor[J]. Front Optoelec Chin, 2009, 2(2): 159-162.
[10] Guoli CAI, Wei JIAN. Temperature sensing capacity of fiber Bragg grating at liquid nitrogen temperature[J]. Front Optoelec Chin, 2008, 1(3-4): 223-225.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed