Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec    2013, Vol. 6 Issue (3) : 346-352    https://doi.org/10.1007/s12200-013-0327-9
RESEARCH ARTICLE
Band gap properties of 2D square lattice photonic crystal composed of rectangular cells
Somaye SERAJMOHAMMADI1(), Hamed ALIPOUR-BANAEI2
1. Department of Electrical Engineering, Ahar Branch, Islamic Azad University, Ahar, Iran; 2. Department of Electronics, Tabriz Branch, Islamic Azad University, Tabriz, Iran
 Download: PDF(485 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, the photonic band gap (PBG) properties of two dimensional (2D) square lattice photonic crystal structures composed of rectangular cells were studied. The effect of refractive index, rectangles length and the ratio of width to length of the rectangles on the PBG properties of the structure with different configurations was investigated. It is found that the density of gaps in both modes (transverse electric (TE) and transverse magnetic (TM)) is high for structure composed of rectangular dielectric rods in air, while the density of the gaps is very low for structure composed of rectangular air pores in dielectric material.

Keywords photonic crystal (PhC)      band gap      refractive index     
Corresponding Author(s): SERAJMOHAMMADI Somaye,Email:s-seraj@iau-ahar.ac.ir   
Issue Date: 05 September 2013
 Cite this article:   
Somaye SERAJMOHAMMADI,Hamed ALIPOUR-BANAEI. Band gap properties of 2D square lattice photonic crystal composed of rectangular cells[J]. Front Optoelec, 2013, 6(3): 346-352.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-013-0327-9
https://academic.hep.com.cn/foe/EN/Y2013/V6/I3/346
Fig.1  Typical photonic crystal with horizontal rectangular cells
Fig.2  Gap map of structure composed of horizontal (a) dielectric rods; (b) air pores versus refractive index ()
Fig.3  Gap map of structure composed of horizontal (a) dielectric rods; (b) air pores versus/ ratio
Fig.4  Gap map of structure composed of horizontal (a) dielectric rods; (b) air pores versus width to length ratio ()
Fig.5  Typical photonic crystal with vertical rectangular cells
Fig.6  Gap map of structure composed of vertical (a) dielectric rods; (b) air pores versus refractive index ()
Fig.7  Gap map of structure composed of vertical (a) dielectric rods; (b) air pores versus / ratio
Fig.8  Gap map of structure composed of vertical (a) dielectric rods; (b) air pores versus width to length ratio ()
1 Sakoda K. Optical Properties of Photonic Crystals. Berlin: Springer-Verlag, 2001
2 Alipour-Banaei H, Mehdizadeh F. A proposal for anti-UVB filter based on one-dimensional photonic crystal structure. Digest Journal of Nanomaterials and Biostructures , 2012, 7(1): 361-371
3 Alipour-Banaei H, Mehdizadeh F. Significant role of photonic crystal resonant cavities in WDM and DWDM communication tunable filters. Optik-International Journal for Light and Electron Optics , 2012,
doi: 10.1016/j.ijleo.2012.07.029 pmid:10.1016/j.ijleo.2012.07.029" target="blank"> (in press)
doi: 10.1016/j.ijleo.2012.07.029
4 Alipour-Banaei H, Mehdizadeh F, Hassangholizadeh-Kashtiban M. Important effect of defect parameters on the characteristics of Thue-Morse photonic crystal filters. Advances in OptoElectronics , 2013: 1-5
doi: 10.1155/2013/856148
5 Robinson S, Nakkeeran R. Investigation on two dimensional photonic crystal resonant cavity based bandpass filter. Optik-International Journal for Light and Electron Optics , 2012, 123(5): 451-457
6 Mehdizadeh F, Alipour-Banaei H, Daie-Kuzekanani Z. All optical multi reflection structure based on one dimensional photonic crystals for WDM communication systems. Optoelectronics and Advanced Materials-Rapid Communications , 2012, 6: 527-531
7 Ahmadi Tameh T, Isfahani B M, Granpayeh N, Javan A M. Improving the performance of all-optical switching based on nonlinear photonic Crystal microring resonators. AEü-International Journal of Electronics and Communications , 2011, 65(4): 281-287
doi: 10.1016/j.aeue.2010.03.013
8 Bazargani H P. Proposal for a 4-channel all optical demultiplexer using 12-fold photonic quasicrystal. Optics Communications , 2012, 285(7): 1848-1853
doi: 10.1016/j.optcom.2011.12.002
9 Rostami A.,Banei H A, Nazari F, Bahrami A. An ultra compact photonic crystal wavelength division demultiplexer using resonance cavities in a modified Y-branch structure. Optik-International Journal for Light and Electron Optics , 2011, 122(16): 1481-1485
10 Cheng S C, Wang J Z, Chen L W, Wang C C. Multichannel wavelength division multiplexing system based on silicon rods of periodic lattice constant of hetero photonic crystal units.Optik-International Journal for Light and Electron Optics , 2012, 123(21): 1928-1933
11 Joannopoulos J D, Mead R D, Winn J N. Photonic Crystals: Molding the Flow of Light. Princeton: Princeton University Press, 1995
12 Matthews A F, Mingaleev S F, Kivshar Y S. Band-gap engineering and defect modes in photonic crystals with rotated hexagonal holes. Laser Physics , 2004, 14(5): 631-634
13 Kalra Y, Sinha R K. Photonic band gap engineering in 2D photonic crystals. Pramana , 2006, 67(6): 1155-1164
doi: 10.1007/s12043-006-0030-0
14 Liu W L, Yang T J. Engineering the bandgap of a two-dimensional photonic crystal with slender dielectric veins. Physics Letters A , 2007, 369(5-6): 518-523
doi: 10.1016/j.physleta.2007.05.045
15 Rezaei B, Kalafi M. Engineering absolute band gap in anisotropic hexagonal photonic crystals. Optics Communications , 2006, 266(1): 159-163
doi: 10.1016/j.optcom.2006.04.035
16 Liu W L, Liou Y Y, Wei J C, Yang T J. Band gap studies of 2D photonic crystals with hybrid scatterers. Physica B, Condensed Matter , 2009, 404(21): 4237-4242
doi: 10.1016/j.physb.2009.08.026
17 Wu Z H, Xie K, Yang H J. Band gap properties of two-dimensional photonic crystals with rhombic lattice. Optik-International Journal for Light and Electron Optics , 2012, 123(6): 534-536
18 Liu D, Gao Y H, Gao D S, Han X Y. Photonic band gaps in two-dimensional photonic crystals of core-shell-type dielectric nanorod heterostructures. Optics Communications , 2012, 285(7): 1988-1992
doi: 10.1016/j.optcom.2011.12.011
19 Mehdizadeh F, Alipour-Banaei H. Bandgap management in two-dimensional photonic crystal Thue-Morse structures. Journal of Optical Communications , 2013, 34(1): 61-65
doi: 10.1515/joc-2013-0007
20 Johnson S G, Joannopoulos J D. Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Optics Express , 2001, 8(3): 173-190
doi: 10.1364/OE.8.000173 pmid:19417802
[1] Etu PODDER, Md. Bellal HOSSAIN, Rayhan Habib JIBON, Abdullah Al-Mamun BULBUL, Himadri Shekhar MONDAL. Chemical sensing through photonic crystal fiber: sulfuric acid detection[J]. Front. Optoelectron., 2019, 12(4): 372-381.
[2] Jiayu LI, Yijun XIE, Ping SUN. Edge detection on terahertz pulse imaging of dehydrated cutaneous malignant melanoma embedded in paraffin[J]. Front. Optoelectron., 2019, 12(3): 317-323.
[3] Ashkan PASHAMEHR,Mahdi ZAVVARI,Hamed ALIPOUR-BANAEI. All-optical AND/OR/NOT logic gates based on photonic crystal ring resonators[J]. Front. Optoelectron., 2016, 9(4): 578-584.
[4] Dongwei WU,Jianjun LIU,Hao HAN,Zhanghua HAN,Zhi HONG. A high Q terahertz asymmetrically coupled resonator and its sensing performance[J]. Front. Optoelectron., 2015, 8(1): 68-72.
[5] Pradip DALAPATI,Nabin Baran MANIK,Asok Nath BASU. Tunneling current in Si-doped n type-GaAs heterostructures infrared emitter[J]. Front. Optoelectron., 2014, 7(4): 501-508.
[6] Diqiu HUANG, Xiangbin ZENG, Yajuan ZHENG, Xiaojin WANG, Yanyan YANG. Influence of process parameters on band gap of Al-doped ZnO film[J]. Front Optoelec, 2013, 6(1): 114-121.
[7] E. KASPER, M. OEHME, J. WERNER, T. AGUIROV, M. KITTLER. Direct band gap luminescence from Ge on Si pin diodes[J]. Front Optoelec, 2012, 5(3): 256-260.
[8] Lin GAN, Zhiyuan LI. Designs and experiments on infrared two-dimensional silicon photonic crystal slab devices[J]. Front Optoelec, 2012, 5(1): 21-40.
[9] Jinsong XIA, Takuya MARUIZUMI, Yasuhiro SHIRAKI. Ge quantum dots light-emitting devices[J]. Front Optoelec, 2012, 5(1): 13-20.
[10] Shuxin LI, Yunjun RUI, Yunqing CAO, Jun XU, Kunji CHEN. Annealing effect on optical and electronic properties of silicon rich amorphous silicon-carbide films[J]. Front Optoelec, 2012, 5(1): 107-111.
[11] Khaleel S. ALTOWIJ, Abdulsalam ALKHOLIDI, Habib HAMAM. Effect of clear atmospheric turbulence on quality of free space optical communications in Yemen[J]. Front Optoelec Chin, 2010, 3(4): 423-428.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed