Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec    2013, Vol. 6 Issue (3) : 282-289    https://doi.org/10.1007/s12200-013-0334-x
RESEARCH ARTICLE
Strain effects on performance of electroabsorption optical modulators
Kambiz ABEDI()
Department of Electrical Engineering, Faculty of Electrical and Computer Engineering, Shahid Beheshti University, Tehran 1983963113, Iran
 Download: PDF(173 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper reports a detailed theoretical investigation of strain effects on the performance of electroabsorption optical modulators based on the asymmetric intra-step-barrier coupled double strained quantum wells (AICD-SQWs) active layer. For this purpose, the electroabsorption coefficient was calculated over a range of AICD-SQWs strain from compressive to tensile strain. Then, the extinction ratio (ER) and insertion loss parameters were evaluated from calculated electroabsorption coefficient for transverse electric (TE) input light polarization. The results of the simulation suggest that the tensile strain from 0.05% to 0.2% strain in the wide quantum well has a significant impact on the ER and insertion loss as compared with compressive strain, whereas the compressive strain of the narrow quantum well from -0.5% to -0.7% strain has a more pronounced impact on the improvement of the ER and insertion loss as compared with tensile strain.

Keywords asymmetric intra-step-barrier coupled double strained quantum wells (AICD-SQWs)      electroabsorption modulators      strain      insertion loss     
Corresponding Author(s): ABEDI Kambiz,Email:K_Abedi@sbu.ac.ir   
Issue Date: 05 September 2013
 Cite this article:   
Kambiz ABEDI. Strain effects on performance of electroabsorption optical modulators[J]. Front Optoelec, 2013, 6(3): 282-289.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-013-0334-x
https://academic.hep.com.cn/foe/EN/Y2013/V6/I3/282
Fig.1  Schematic of layers for the AICD-SQWs structure, and direction of applied electric field () is indicated as well
Fig.2  Absorption coefficient as function of the wide well layer strain at = 1.55 μm
Fig.3  Calculated ER parameter as function of the wide well layer strain at = 1.55 μm
electric field /(kV?cm-1)extinction ratio /dBwide well strain/%
203.820.06
6023.16-0.14
10027.45-0.06
12017.040.04
Tab.1  Positive peak value of ER with various electric fields
Fig.4  Calculated insertion loss parameter as function of the wide well layer strain at = 1.55 μm
Fig.5  Calculated ER parameter versus insertion loss for various electric fields at = 1.55 μm
Fig.6  Calculated ER parameter as function of the narrow well layer strain at = 1.55 μm
Fig.7  Calculated insertion loss parameter as function of the narrow well layer strain at = 1.55 μm
1 Irmscher S, Lewen R, Eriksson U. InP-InGaAsP high-speed traveling-wave electroabsorption modulators with integrated termination resistors. IEEE Photonics Technology Letters , 2002, 14(7): 923–925
doi: 10.1109/LPT.2002.1012386
2 Kim J, Kang Y S, Chung YD, Choi K S. Development and RF characteristics of analog 60-GHz electroabsorption modulator module for RF/optic conversion. IEEE Transactions on Microwave Theory and Techniques , 2006, 54(2): 780–787
doi: 10.1109/TMTT.2005.863067
3 Kang Y S, Kim S B, Chung Y D, Kim J. Low insertion loss electroabsorption modulator based on dual waveguide sturcture with spot size converter. In: The 18th Annual Meeting of the IEEE Lasers and Electro-Optics Society , Sydney, NSW, 2005, 422-423
4 4 .Zhuang Y L, Chang W S C, Yu P K L. Peripheral-coupled-waveguide MQW electroabsorption modulator for near transparency and high spurious free dynamic range RF fiber-optic link. IEEE Photonics Technology Letters , 2004, 16(9): 2033–2035
doi: 10.1109/LPT.2004.833057
5 Chiu Y J, Wu T H, Cheng W C, Lin F J, Bowers J E. Enhanced performance in traveling-wave electroabsorption modulators based on undercut etching the active-region. IEEE Photonics Technology Letters , 2005, 17(10): 2065–2067
doi: 10.1109/LPT.2005.856377
6 Morrison G B, Raring J W, Wang C S, Skogen E J, Chang Y C, Sysak M, Coldren L A. Electroabsorption modulator performance predicted from band-edge absorption spectra of bulk, quantum-well, and quantum-well-intermixed InGaAsP structures. Solid-State Electronics , 2007, 51(1): 38–47
doi: 10.1016/j.sse.2006.10.013
7 Miyazaki Y, Tada H, Tokizaki S, Takagi K, Hanamaki Y, Aoyagi T, Mitsui Y. dBm average optical output power operation of small-chirp 40-gbps electroabsorption modulator with tensile-strained asymmetric quantum-well absorption layer. IEEE Journal of Quantum Electronics , 2003, 39(8): 1009–1017
doi: 10.1109/JQE.2003.814370
8 Shim J, Liu B, Bowers J E. Dependence of transmission curves on input optical power in an electroabsorption modulator. IEEE Journal of Quantum Electronics , 2004, 40(11): 1622–1628
doi: 10.1109/JQE.2004.835115
9 Abedi K, Ahmadi V, Darabi E, Moravvej-Farshi M K, Sheikhi M H. Design of a novel periodic asymmetric intra-step-barrier coupled double strained quantum well electroabsorption modulator at 1.55 μm. Solid-State Electronics , 2008, 53(2): 312–322
doi: 10.1016/j.sse.2007.08.018
10 Abedi K, Ahmadi V, Moravvej-Farshi M K. Optical and microwave analysis of mushroom-type waveguides for traveling wave electroabsorption modulators based on asymmetric intra-step-barrier coupled double strained quantum wells by full-vectorial method. Optical and Quantum Electronics , 2009, 41(10): 719–733
doi: 10.1007/s11082-010-9385-z
11 Abedi K. Improvement of saturation optical intensity in electroabsorption modulators with asymmetric intra-step-barrier coupled double strained quantum wells. The European Physical Journal Applied Physics , 2011, 56(1): 10403
12 Abedi K. Improvement in performance of traveling wave electroabsorption modulator with asymmetric intra-step-barrier coupled double strained quantum wells the active region, segmented transmission-line and mushroom-type waveguide. Optical and Quantum Electronics , 2012, 44(1-2): 55–63
doi: 10.1007/s11082-011-9539-7
13 Abedi K. The design of electroabsorption modulators with negative chirp and very low insertion loss. βJournal of Semiconductors, 2012, 33(6): 064001`
doi: 10.1088/1674-4926/33/6/064001
14 Abedi K. High-performance traveling-wave electroabsorption modulators utilizing mushroom-type waveguide and periodic transmission line loading. Optoelectronics Letters, 2012, 8(3): 176–178
doi: 10.1007/s11801-012-1183-3
15 Abedi K, Afrouz H. High performance hybrid silicon evanescent traveling wave electroabsorption modulators. Acta Physica Polonica A , 2013, 123(2): 415–417
doi: 10.12693/APhysPolA.123.415
16 Abedi K. High-performance optical wavelength-selective switches based on double ring resonators. Optoelectronics Letters, 2013, 9 (3): 185–188
doi: 10.1007/s11801-013-3019-1
17 Abedi K. Design and modeling of traveling wave electrode on electroabsorption modulator based on asymmetric intra-step-barrier coupled double strained quantum wells active layer. International Journal of Advances in Engineering & Technology ,, 2011, 1(4): 388–394
18 Abedi K. Effects of geometrical structure on microwave and optical properties of traveling wave electroabsorption modulators based on asymmetric coupled strained quantum wells active layer. International Journal of Engineering Science and Technology , 2011, 3(8): 6684–6691
19 Abedi K. An investigation of strain effect on saturation optical intensity in electroabsorption modulators based on asymmetric quantum wells. Canadian Journal on Electrical and Electronics Engineering , 2011, 2(6): 209–215
20 Jirauschek C. Accuracy of transfer matrix approaches for solving the effective mass schrodinger equation. IEEE Journal of Quantum Electronics , 2009, 45(9): 1059 -1067
doi: 10.1109/JQE.2009.2020998
21 Pires M P, Souza P L D, Yavich B, Pereira R G, Carvalho W. On the optimization of InGaAs-InAlAs quantum-well structures for electroabsorption modulators. Journal of Lightwave Technology , 2000, 18(4): 598–603
doi: 10.1109/50.838135
22 Ohtoshi T. Numerical analysis of α parameters and extinction ratios in InGaAsP-InP pptical modulators. IEEE Journal of Selected Topics in Quantum Electronics , 2003, 9(3): 755–762
doi: 10.1109/JSTQE.2003.818856
23 Hou L P, Wang W, Zhu H L. Optimization design of an electroabsorption modulator integrated with spot-size converter. Optoelectronics Letters , 2005, 1(2): 83–87
doi: 10.1007/BF03033673
24 Shin D S. Waveguiding effect in electroabsorption modulators: passivation layers and their impact on extinction ratios. ETRI Journal , 2005, 27(1): 95–101
doi: 10.4218/etrij.05.0104.0053
[1] F. MAKOUEI,S. MAKOUEI. Design of temperature insensitive in vivo strain sensor using multilayer single mode optical fiber[J]. Front. Optoelectron., 2016, 9(4): 621-626.
[2] Yuewen HAN, Cheng CHENG. An optimized distributed fiber Bragg grating sensing system based on optical frequency domain reflectometry[J]. Front Optoelec, 2012, 5(3): 345-350.
[3] Yijie HUO, Hai LIN, Robert CHEN, Yiwen RONG, Theodore I. KAMINS, James S. HARRIS. MBE growth of tensile-strained Ge quantum wells and quantum dots[J]. Front Optoelec, 2012, 5(1): 112-116.
[4] Guodong WANG, Yunjian WANG, Na LI. Axial strain sensitivity analysis of long period fiber grating by new transfer matrix method[J]. Front Optoelec Chin, 2011, 4(4): 430-433.
[5] Pijus Kanti SAMANTA, Partha Roy CHAUDHURI. Substrate effect on morphology and photoluminescence from ZnO monopods and bipods[J]. Front Optoelec Chin, 2011, 4(2): 130-136.
[6] Zigang DUAN, Wei SHI, Yan LI, Guangyue CHAI. Gain properties and optical-feedback suppression of asymmetrical curved active waveguides[J]. Front Optoelec Chin, 2009, 2(4): 379-383.
[7] Xinlong CHANG, Ming LI, Xuanzi HAN. Recent development and applications of polymer optical fiber sensors for strain measurement[J]. Front Optoelec Chin, 2009, 2(4): 362-367.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed