Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec    2013, Vol. 6 Issue (4) : 418-428    https://doi.org/10.1007/s12200-013-0343-9
RESEARCH ARTICLE
Side chains and backbone structures influence on 4,7-dithien-2-yl-2,1,3-benzothiadiazole (DTBT)-based low-bandgap conjugated copolymers for organic photovoltaics
Debin NI1, Dong YANG2, Shuying MA1, Guoli TU1(), Jian ZHANG2()
1. Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China; 2. State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory of Clean Energy, Dalian 116023, China
 Download: PDF(470 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Five 4,7-dithien-2-yl-2,1,3-benzothiadiazole (DTBT)-based conjugated copolymers with controlled molecular weight were synthesized to explore their optical, energy level and photovoltaic properties. By tuning the positions of hexyl side chains on DTBT unit, the DTBT-fluorene copolymers exhibited very different aggregation properties, leading to 60 nm bathochromic shift in their absorptions and the corresponding power conversion efficiencies (PCEs) value of photovoltaic cells varied from 0.38%, 0.69% to 2.47%. Different copolymerization units, fluorene, carbazole and phenothiazine were also investigated. The polymer based on phenothiazine exhibited lower PCE value due to much lower molecular weight owing to its poor solubility, although phenothiazine units were expected to be a better electron donor. Compared with the fluorene-based polymer, the carbazole-DTBT copolymer showed higher short circuit current density (Jsc) and PCE value due to its better intermolecular stacking.

Keywords 4,7-dithien-2-yl-2,1,3-benzothiadiazole (DTBT)      conjugated polymers      low-bandgap      organic photovoltaics     
Corresponding Author(s): TU Guoli,Email:tgl@mail.hust.edu.cn; ZHANG Jian,Email:jianzhang@dicp.ac.cn   
Issue Date: 05 December 2013
 Cite this article:   
Debin NI,Dong YANG,Shuying MA, et al. Side chains and backbone structures influence on 4,7-dithien-2-yl-2,1,3-benzothiadiazole (DTBT)-based low-bandgap conjugated copolymers for organic photovoltaics[J]. Front Optoelec, 2013, 6(4): 418-428.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-013-0343-9
https://academic.hep.com.cn/foe/EN/Y2013/V6/I4/418
Fig.1  Molecular structures of five DTBT based polymer
Fig.2  Synthetic procedures of monomers and polymers
Fig.3  TGA curves of five DBTB based copolymer at a scan rate of 10°C/min under a nitrogen atmosphere
Mna)/(kg?mol-1)PDIrepeatunitTdb)/°Clmax/nmEgopt c)/eVHOMO d)/eVLUMO e)/eV
P126.11.6930438.9374/4862.10-5.53-3.43
P228.81.7133443.6372/5301.98-5.47-3.49
P318.81.4025444.7390/5501.93-5.44-3.51
P416.62.4922327.2400/5621.85-5.44-3.59
P58.61.9311339.3390/5641.81-5.18-3.37
Tab.1  Yield, molecular weight, PDI, and thermal properties, opticals and electrochemical properties of the polymers
Fig.4  UV-vis absorption spectra of the thin film of the polymers
Fig.5  Cyclic voltammetry of polymers film coated on a glass carbon electrode in Bu4NPF4/CH3CN solution
Fig.6  characteristics of photovoltaic cells of five polymers
Fig.7  External quantum efficiency (EQE) of the PSCs based on five polymers
polymer: PC60BM(weight ratio)annealing temperature/°Cthickness/nmJsc/(mA?cm-2)Voc/VFFPCE/%
P11:460741.650.820.280.38
P21:370713.510.870.290.69
P31:3130736.670.860.432.47
P41:280668.650.760.402.60
P51:2100562.980.570.320.54
Tab.2  Optimized device characteristics of five DTBT based copolymers
Fig.8  AFM (5 μm × 5 μm) topography and phase images of five polymers
1 Yu G, Gao J, Hummelen J C, Wudl F, Heeger A J. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science , 1995, 270(5243): 1789–1791
doi: 10.1126/science.270.5243.1789
2 Brabec C J, Sariciftci N S, Hummelen J C. Plastic solar cells. Advanced Functional Materials , 2001, 11(1): 15–26
doi: 10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO;2-A
3 Coakley K M, McGehee M D. Conjugated polymer photovoltaic cells. Chemistry of Materials , 2004, 16(23): 4533–4542
doi: 10.1021/cm049654n
4 Günes S, Neugebauer H, Sariciftci N S. Conjugated polymer-based organic solar cells. Chemical Reviews , 2007, 107(4): 1324–1338
doi: 10.1021/cr050149z pmid:17428026
5 Ma W, Yang C, Gong X, Lee K, Heeger A J. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Advanced Functional Materials , 2005, 15(10): 1617–1622
doi: 10.1002/adfm.200500211
6 Reyes-Reyes M, Kim K, Carroll D L. High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61blends. Applied Physics Letters , 2005, 87(8): 083506–083508
doi: 10.1063/1.2006986
7 Qin R P, Li W W, Li C H, Du C, Veit C, Schleiermacher H F, Andersson M, Bo Z, Liu Z P, Ingan?s O, Wuerfel U, Zhang F L. A planar copolymer for high efficiency polymer solar cells. Journal of the American Chemical Society , 2009, 131(41): 14612–14613
doi: 10.1021/ja9057986 pmid:19788295
8 Peet J, Kim J Y, Coates N E, Ma W L, Moses D, Heeger A J, Bazan G C. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nature Materials , 2007, 6(7): 497–500
doi: 10.1038/nmat1928 pmid:17529968
9 Thompson B C, Fréchet J M J. Polymer-fullerene composite solar cells. Angewandte Chemie International Edition , 2007, 47(1): 58–77
doi: 10.1002/anie.200702506 pmid:18041798
10 Kim Y, Cook S, Tuladhar S M, Choulis S A, Nelson J, Durrant J R, Bradley D D C, Giles M, McCulloch I, Ha C S, Ree M. A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells. Nature Materials , 2006, 5(3): 197–203
doi: 10.1038/nmat1574
11 Li G, Shrotriya V, Huang J S, Yao Y, Moriarty T, Emery K, Yang Y. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nature Materials , 2005, 4(11): 864–868
doi: 10.1038/nmat1500
12 Shi C J, Yao Y, Yang Y, Pei Q B. Regioregular copolymers of 3-alkoxythiophene and their photovoltaic application. Journal of the American Chemical Society , 2006, 128(27): 8980–8986
doi: 10.1021/ja061664x pmid:16819895
13 Campoy-Quiles M, Ferenczi T, Agostinelli T, Etchegoin P G, Kim Y, Anthopoulos T D, Stavrinou P N, Bradley D D C, Nelson J. Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends. Nature Materials , 2008, 7(2): 158–164
doi: 10.1038/nmat2102 pmid:18204451
14 Zhao G J, He Y J, Li Y F. 6.5% efficiency of polymer solar cells based on poly(3-hexylthiophene) and indene-C60 bisadduct by device optimization. Advanced Materials , 2010, 22(39): 4355–4358
doi: 10.1002/adma.201001339 pmid:20589774
15 Chang C Y, Wu C E, Chen S Y, Cui C H, Cheng Y J, Hsu C S, Wang Y L, Li Y F. Enhanced performance and stability of a polymer solar cell by incorporation of vertically aligned, cross-linked fullerene nanorods. Angewandte Chemie International Edition , 2011, 50(40): 9386–9390
16 He F, Wang W, Chen W, Xu T, Darling S B, Strzalka J, Liu Y, Yu L P. Tetrathienoanthracene-based copolymers for efficient solar cells. Journal of the American Chemical Society , 2011, 133(10): 3284–3287
doi: 10.1021/ja1110915 pmid:21332135
17 Piliego C, Holcombe T W, Douglas J D, Woo C H, Beaujuge P M, Fréchet J M J. Synthetic control of structural order in N-alkylthieno[3,4-c]pyrrole-4,6-dione-based polymers for efficient solar cells. Journal of the American Chemical Society , 2010, 132(22): 7595–7597
doi: 10.1021/ja103275u pmid:20469863
18 Chen H Y, Hou J H, Zhang S Q, Liang Y Y, Yang G W, Yang Y, Yu L P, Wu Y, Li G. Polymer solar cells with enhanced open-circuit voltage and efficiency. Nature Photonics , 2009, 3(11): 649–653
doi: 10.1038/nphoton.2009.192
19 Price S C, Stuart A C, Yang L Q, Zhou H X, You W. Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer-fullerene solar cells. Journal of the American Chemical Society , 2011, 133(12): 4625–4631
doi: 10.1021/ja1112595 pmid:21375339
20 Kim J Y, Lee K, Coates N E, Moses D, Nguyen T Q, Dante M, Heeger A J. Efficient tandem polymer solar cells fabricated by all-solution processing. Science , 2007, 317(5835): 222–225
doi: 10.1126/science.1141711 pmid:17626879
21 Wang E, Hou L T, Wang Z Q, Hellstr?m S, Zhang F L, Ingan?s O, Andersson M R. An easily synthesized blue polymer for high-performance polymer solar cells. Advanced Materials , 2010, 22(46): 5240–5244
doi: 10.1002/adma.201002225 pmid:20827685
22 Amb C M, Chen S, Graham K R, Subbiah J, Small C E, So F, Reynolds J R. Dithienogermole as a fused electron donor in bulk heterojunction solar cells. Journal of the American Chemical Society , 2011, 133(26): 10062–10065
doi: 10.1021/ja204056m pmid:21644517
24 Jin J K, Choi J K, Kim B J, Kang H B, Yoon S C, You H, Jung H T. Synthesis and photovoltaic performance of low-bandgap polymers on the basis of 9,9-dialkyl-3,6-dialkyloxysilafluorene. Macromolecules , 2011, 44(3): 502–511
doi: 10.1021/ma102173a
25 Peng Q, Liu X J, Su D, Fu G W, Xu J, Dai L M. Novel benzo[1,2-b:4,5-b’]dithiophene-benzothiadiazole derivatives with variable side chains for high-performance solar cells. Advanced Materials , 2011, 23(39): 4554–4558
doi: 10.1002/adma.201101933 pmid:21898607
26 Huo L J, Guo X, Zhang S Q, Li Y F, Hou J H. PBDTTTZ: a broad band gap conjugated polymer with high photovoltaic performance in polymer solar cells. Macromolecules , 2011, 44(11): 4035–4037
doi: 10.1021/ma200743b
27 Dou L T, You J B, Yang J, Chen C C, He Y J, Murase S, Moriarty T, Emery K, Li G, Yang Y. Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer. Nature Photonics , 2012, 6(3): 180–185
doi: 10.1038/nphoton.2011.356
28 Li G, Zhu R, Yang Y. Polymer solar cells. Nature Photonics , 2012, 6(3): 153–161
doi: 10.1038/nphoton.2012.11
29 Scharber M C, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger A J, Brabec C J. Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion efficiency. Advanced Materials , 2006, 18(6): 789–794
doi: 10.1002/adma.200501717
30 Blouin N, Michaud A, Gendron D, Wakim S, Blair E, Neagu-Plesu R, Belletête M, Durocher G, Tao Y, Leclerc M. Toward a rational design of poly(2,7-carbazole) derivatives for solar cells. Journal of the American Chemical Society , 2008, 130(2): 732–742
doi: 10.1021/ja0771989 pmid:18095689
31 Huo L J, Hou J H, Chen H Y, Zhang S Q, Jiang Y, Chen T L, Yang Y. Bandgap and molecular level control of the low-bandgap polymers based on 3,6-dithiophen-2-yl-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione toward highly efficient polymer solar cells. Macromolecules , 2009, 42(17): 6564–6571
doi: 10.1021/ma9012972
32 Liang Y Y, Feng D Q, Wu Y, Tsai S T, Li G, Ray C, Yu L P. Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties. Journal of the American Chemical Society , 2009, 131(22): 7792–7799
doi: 10.1021/ja901545q pmid:19453105
33 Zoombelt A P, Fonrodona M, Wienk M M, Sieval A B, Hummelen J C, Janssen R A J. Photovoltaic performance of an ultrasmall band gap polymer. Organic Letters , 2009, 11(4): 903–906
doi: 10.1021/ol802839z pmid:19170621
34 Mondal R, Ko S, Norton J E, Miyaki N, Becerril H A, Verploegen E, Toney M F, Bredas J L, McGehee M D, Bao Z N. Molecular design for improved photovoltaic efficiency: band gap and absorption coefficient engineering. Journal of Materials Chemistry , 2009, 19(39): 7195–7197
doi: 10.1039/b915222a
35 Dhanabalan A, Van Duren J K J, Van Hal P A, Van Dongen J L J, Janssen R A J. Synthesis and characterization of a low bandgap conjugated polymer for bulk heterojunction photovoltaic cells. Advanced Functional Materials , 2001, 11(4): 255–262
doi: 10.1002/1616-30283(200108)11:4<255::AID-ADFM255>3.0.CO;2-I
36 Boudreault P L T, Michaud A, Leclerc M. A new poly(2,7-Dibenzosilole) derivative in polymer solar cells. Macromolecular Rapid Communications , 2007, 28(22): 2176–2179
doi: 10.1002/marc.200700470
37 Song S, Jin Y, Kim S H, Moon J, Kim K, Kim J Y, Park S H, Lee K, Suh H. Stabilized polymers with novel indenoindene backbone against photodegradation for LEDs and solar cells. Macromolecules , 2008, 41(20): 7296–7305
doi: 10.1021/ma801420e
38 Moulé A J, Tsami A, Bünnagel T W, Forster M, Kronenberg N M, Scharber M, Koppe M, Morana M, Brabec C J, Meerholz K, Scherf U. Two novel cyclopentadithiophene-based alternating copolymers as potential donor components for high-efficiency bulk-heterojunction-type solar cells. Chemistry of Materials , 2008, 20(12): 4045–4050
doi: 10.1021/cm8006638
39 Liao L, Dai L M, Smith A, Durstock M, Lu J P, Ding J F, Tao Y. Photovoltaic-active dithienosilole-containing polymers. Macromolecules , 2007, 40(26): 9406–9412
doi: 10.1021/ma071825x
40 Zhou E, Nakamura M, Nishizawa T, Zhang Y, Wei Q S, Tajima K, Yang C H, Hashimoto K. Synthesis and photovoltaic properties of a novel low band gap polymer based on N-substituted dithieno[3,2-b:2′,3′-d]pyrrole. Macromolecules , 2008, 41(22): 8302–8305
doi: 10.1021/ma802052w
41 Wang M, Hu X W, Liu P, Li W, Gong X, Huang F, Cao Y. Donor-acceptor conjugated polymer based on naphtho[1,2-c:5,6-c]bis[1,2,5]thiadiazole for high-performance polymer solar cells. Journal of the American Chemical Society , 2011, 133(25): 9638–9641
doi: 10.1021/ja201131h pmid:21630707
42 Zhou H X, Yang L Q, Xiao S Q, Liu S B, You W. Donor-acceptor polymers incorporating alkylated dithienylbenzothiadiazole for bulk heterojunction solar cells: pronounced effect of positioning alkyl chains. Macromolecules , 2009, 43(2): 811–820
doi: 10.1021/ma902241b
43 Svensson M, Zhang F, Veenstra S C, Verhees W J H, Hummelen J C, Kroon J M, Ingan?s O, Andersson M R. High-performance polymer solar cells of an alternating polyfluorene copolymer and a fullerene derivative. Advanced Materials , 2003, 15(12): 988–991
doi: 10.1002/adma.200304150
44 Ingan?s O, Svensson M, Zhang F, Gadisa A, Persson N K, Wang X, Andersson M R. Low bandgap alternating polyfluorene copolymers in plastic photodiodes and solar cells. Applied Physics A, 2004, 79(1): 31–35
doi: 10.1007/s00339-003-2498-5
45 Chen M H, Hou J H, Hong Z, Yang G W, Sista S, Chen L M, Yang Y. Efficient polymer solar cells with thin active layers based on alternating polyfluorene copolymer/fullerene bulk heterojunctions. Advanced Materials , 2009, 21(42): 4238–4242
doi: 10.1002/adma.200900510
46 Lee S K, Cho S, Tong M, Seo J H, Heeger A J. Effects of substituted side-chain position on donor–acceptor conjugated copolymers. Journal of Polymer Science Part A: Polymer Chemistry , 2011, 49(8): 1821–1829
doi: 10.1002/pola.24607
47 Blouin N, Michaud A, Leclerc M. A low-bandgap poly(2,7-carbazole) derivative for use in high-performance solar cells. Advanced Materials , 2007, 19(17): 2295–2300
doi: 10.1002/adma.200602496
48 Park S H, Roy A, Beaupre S, Cho S, Coates N, Moon J S, Moses D, Leclerc M, Lee K, Heeger A J. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nature Photonics , 2009, 3(5): 297–302
doi: 10.1038/nphoton.2009.69
49 Kline R J, McGehee M D, Kadnikova E N, Liu J S, Fréchet J M J, Toney M F. Dependence of regioregular poly(3-hexylthiophene) film morphology and field-effect mobility on molecular weight. Macromolecules , 2005, 38(8): 3312–3319
doi: 10.1021/ma047415f
50 Schilinsky P, Asawapirom U, Scherf U, Biele M, Brabec C J. Influence of the molecular weight of poly(3-hexylthiophene) on the performance of bulk heterojunction solar cells. Chemistry of Materials , 2005, 17(8): 2175–2180
doi: 10.1021/cm047811c
51 Koppe M, Brabec C J, Heiml S, Schausberger A, Duffy W, Heeney M, McCulloch I. Influence of molecular weight distribution on the gelation of P3HT and its impact on the photovoltaic performance. Macromolecules , 2009, 42(13): 4661–4666
doi: 10.1021/ma9005445
52 Osaka I, Saito M, Mori H, Koganezawa T, Takimiya K. Drastic change of molecular orientation in a thiazolothiazole copolymer by molecular-weight control and blending with PC61BM leads to high efficiencies in solar cells. Advanced Materials , 2012, 24(3): 425–430
doi: 10.1002/adma.201103065
53 Müller C, Wang E, Andersson L M, Tvingstedt K, Zhou Y, Andersson M R, Ingan?s O. Influence of molecular weight on the performance of organic solar cells based on a fluorene derivative. Advanced Functional Materials , 2010, 20(13): 2124–2131
doi: 10.1002/adfm.201000224
54 Chu T Y, Alem S, Tsang S W, Tse S C, Wakim S, Lu J P, Dennler G, Waller D, Gaudiana R, Tao Y. Morphology control in polycarbazole based bulk heterojunction solar cells and its impact on device performance. Applied Physics Letters , 2011, 98(25): 253301–253303
doi: 10.1063/1.3601474
55 Admassie S, Ingan?s O, Mammo W, Perzon E, Andersson M R. Electrochemical and optical studies of the band gaps of alternating polyfluorene copolymers. Synthetic Metals , 2006, 156(7–8): 614–623
doi: 10.1016/j.synthmet.2006.02.013
56 Koeckelberghs G, Cremer L D, Persoons A, Verbiest T. Influence of the substituent and polymerization methodology on the properties of chiral poly(dithieno[3,2-b:2′,3′-d]pyrrole)s. Macromolecules , 2007, 40(12): 4173–4181
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed