Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec    2013, Vol. 6 Issue (4) : 373-385    https://doi.org/10.1007/s12200-013-0347-5
REVIEW ARTICLE
Recent developments in sensitizers for mesoporous sensitized solar cells
Kun CAO, Mingkui WANG()
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(501 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Sensitizers have proven to be extremely important in determining the performance of dye-sensitized solar cells (DSCs). The design and understanding of sensitizers, especially D-π-A structured porphyrins, has become a recent focus of DSC research. In this perspective article, advances in the conception and performance of various sensitizers including ruthenium complexes, organic dyes and porphyrins are reviewed with respect to their structure and charge transfer dynamics at the dye-sensitized mesopours heterojunction interface. In particular, the discussion focuses on the trends that perovskite would be the most effective and most likely to be used in DSCs combining with innovative hole transporting materials.

Keywords solar cells      sensitizer      ruthenium complex      porphyrin      organic dye     
Corresponding Author(s): WANG Mingkui,Email:mingkui.wang@mail.hust.edu.cn   
Issue Date: 05 December 2013
 Cite this article:   
Kun CAO,Mingkui WANG. Recent developments in sensitizers for mesoporous sensitized solar cells[J]. Front Optoelec, 2013, 6(4): 373-385.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-013-0347-5
https://academic.hep.com.cn/foe/EN/Y2013/V6/I4/373
Fig.1  Schematic structure of dye sensitized solar cell
Fig.2  Molecular structures of N3 dye and derivatives with various ancillary ligands
sensitizersλmax/nm(?/104 M-1?cm-1)Jsc/(mA·cm-2)Voc/VFFPCE/%reference
N3534(1.42)a)18.20.720.7310.0[4]
Z907Na526(1.16)a)12.50.730.676.1[5]
K19543(1.82)b)14.60.710.677.0[6]
K77546(1.94)c)19.20.780.7210.5[7]
C101547(1.75)c)18.60.740.7510.5[8]
CYC-B1553(2.12)c)23.90.650.558.5[9]
CYC-B11554(2.42)c)20.10.740.7711.5[10]
C106550(1.87)c)19.20.780.7611.3[11]
Ru-TPA-NCS526(2.45)e)4.40.770.341.5[12]
Ru-TPD-NCS540(2.67)e)9.60.760.353.4[12]
IJ-1536(1.91)c)17.60.80.7310.3[13]
Ru-TPA-EO-NCS524(3.09)e)18.36820.729.02[14]
YE05560(-)c)17.00.80.7410.1[15]
TFRS-4501(2.2)c)18.70.750.7310.2[16]
TFRS-63581(1.9)c)17.40.740.759.6[17]
YD2644(3.12)a)18.60.770.7611[18]
LD4672(49.8)f)19.60.710.7210.1[19]
LD14667(49.8)f)20.40.710.6910.1[20]
LD16671(58.6)f)20.60.710.7010.2[21]
YD2-O-C8/Y123—(-)17.70.940.7412.3[22]
BT-I470(4.07)d)15.70.780.617.51[23]
BT-III433(3.65)d)12.50.790.616.01[23]
C219493(5.75)c)17.90.770.7310.1[24]
JK-113490(8.5)c)17.60.710.729.1[25]
D205532(-)c)18.60.720.729.52[26]
WS-9536(2.08)d)18.00.700.729.04[27]
T1—(-)7.990.820.765.0[28]
T3—(-)13.00.840.748.0[28]
C220—(-)14.80.930.7310.1[29]
(CH3NH3)PbI3—(-)17.00.890.629.7[30]
Tab.1  Comparison of devices with various sensitizers compositions
Fig.3  Molecular structures of ruthenium sensitizers with strong electron-donor groups and thiocyanate-free compounds
Fig.4  Molecular structures of zinc porphyrin sensitizers
Fig.5  Molecular structures of metal free organic sensitizers
Fig.6  Schematic representations of single-layer ( = 1)<100>-oriented perovskites with (a) monoammonium (R-N3) or (b) diammonium (NH-R-NH) organic cations
1 O’Regan B, Gr?tzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature , 1991, 353(6346): 737–740
doi: 10.1038/353737a0
2 Bach U, Lupo D, Comte P, Moser J E, Weiss?rtel F, Salbeck J, Spreitzer H, Gr?tzel M. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature , 1998, 395: 583–585
doi: 10.1038/26936
3 Han L Y, Islam A, Chen H, Malapaka C, Chiranjeevi B, Zhang S F, Yang X D, Yanagida M. High-efficiencyβ-sensitized solarβcellβwith a novel co-adsorbent. Energy &amp; Environmental Sciences , 2012, 5(3): 6057–6060
4 Kohle O, Gr?tzel M, Meyer A F, Meyer T B. The photovoltaic stability of, bis(isothiocyanato)rlutheniurn(II)-bis-2, 2′bipyridine-4, 4′-dicarboxylic acid and related sensitizers. Advanced Materials , 1997, 9(11): 904–906
doi: 10.1002/adma.19970091111
5 Wang P, Zakeeruddin S M, Moser J E, Nazeeruddin M K, Sekiguchi T, Gr?tzel M. A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nature Materials , 2003, 2: 402–407
6 Wang P, Klein C, Humphry-Baker R, Zakeeruddin S M, Gr?tzel M. A high molar extinction coefficient sensitizer for stable dye-sensitized solar cells. Journal of the American Chemical Society , 2005, 127(3): 808–809
doi: 10.1021/ja0436190 pmid:15656598
7 Kuang D, Klein C, Ito S, Moser J E, Humphrey-Baker R, Evans N, Duriaux F, Gr?tzel C, Zakeeruddin S M, Gr?tzel M. High-efficiency and stable mesoscopic dye-sensitized solar cells based on a high molar extinction coefficient ruthenium sensitizer and nonvolatile electrolyte. Advanced Materials , 2007, 19(8): 1133–1137
doi: 10.1002/adma.200602172
8 Gao F F, Wang Y, Shi D, Zhang J, Wang M K, Jing X Y, Humphry-Baker R, Wang P, Zakeeruddin S M, Gr?tzel M. Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells. Journal of the American Chemical Society , 2008, 130(32): 10720–10728
doi: 10.1021/ja801942j pmid:18642907
9 Chen C Y, Wu S J, Wu C G, Chen J G, Ho K C. A ruthenium complex with superhigh light-harvesting capacity for dye-sensitized solar cells. Angewandte Chemie International Edition , 2006, 45(35): 5822–5825
doi: 10.1002/anie.200601463
10 Chen C Y, Wang M K, Li J Y, Pootrakulchote N, Alibabaei L, Ngoc-le C H, Decoppet J D, Tsai J H, Gr?tzel C, Wu C G, Zakeeruddin S M, Gr?tzel M. Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells. ACS Nano , 2009, 3(10): 3103–3109
doi: 10.1021/nn900756s pmid:19746929
11 Cao Y M, Bai Y, Yu Q J, Cheng Y M, Liu S, Shi D, Gao F F, Wang P. Dye-sensitized solar cells with a high absorptivity ruthenium sensitizer featuring a 2-(hexylthio)thiophene conjugated bipyridine. Journal of Physical Chemistry C , 2009, 113(15): 6290–6297
doi: 10.1021/jp9006872
12 Karthikeyan C S, Peter K, Wietasch H, Thelakkat M. Highly efficient solid-state dye-sensitized TiO2 solar cells via control of retardation of recombination using novel donor-antenna dyes. Solar Energy Materials and Solar Cells , 2007, 91(5): 432–439
doi: 10.1016/j.solmat.2006.10.006
13 Yum J H, Jung I, Baik C, Ko J J, Nazeeruddin M K, Gr?tzel M. High efficient donor–acceptor ruthenium complex for dye -sensitized solar cell applications. Energy &amp; Environmental Sciences , 2009, 2(1): 100–102
doi: 10.1039/B814863P
14 Yum J H, Moon S J, Karthikeyan C S, Wietasch H, Thelakkat M, Zakeeruddin S M, Nazeeruddin M K, Gr?tzel M. Heteroleptic ruthenium complex containing substituted triphenylamine hole-transport unit as sensitizer for stable dye-sensitized solar cell. Nano Energy , 2012, 1(1): 6–12
doi: 10.1016/j.nanoen.2011.08.004
15 Bessho T, Yoneda E, Yum J H, Guglielmi M, Tavernelli I, Imai H, Rothlisberger U, Nazeeruddin M K, Gr?tzel M. New paradigm in molecular engineering of sensitizers for solar cell applications. Journal of the American Chemical Society , 2009, 131(16): 5930–5934
doi: 10.1021/ja9002684 pmid:19334729
16 Wang S W, Wu K L, Ghadiri E, Lobello M G, Ho S T, Chi Y, Moser J E, Angelis F D, Gr?tzel M, Nazeeruddin M K. Engineering of thiocyanate-free Ru(II) sensitizers for high efficiency dye-sensitized solar cells. Chemical Science , 2013, 4(6): 2423–2433
doi: 10.1039/c3sc50399b
17 Yeh H H, Ho S T, Chi Y, Clifford J N, Palomares E, Liun S H, Chou P T. Ru(II) sensitizers bearing dianionic biazolate ancillaries: ligand synergy for high performance dye sensitized solar cells. Journal of Materials Chemistry A , 2013, 1: 7681–7689
doi: 10.1039/C3TA10988G
18 Bessho T, Zakeeruddin S M, Yeh C Y, Diau E W G, Gr?tzel M. Highly efficient mesoscopic dye-sensitized solar cells based on donor-acceptor-substituted porphyrins. Angewandte Chemie International Edition , 2010, 49(37): 6646–6649
doi: 10.1002/anie.201002118
19 Wang C L, Chang Y C, Lan C M, Lo C F, Diau E W G, Lin C Y. Enhanced light harvesting with π-conjugated cyclic aromatic hydrocarbons for porphyrin-sensitized solar cells. Energy &amp; Environmental Sciences , 2011, 4(5): 1788–1795
doi: 10.1039/C0EE00767F
20 Wang C L, Lan C M, Hong S H, Wang Y F, Pan T Y, Chang C W, Kuo H H, Kuo M Y, Diau E W G, Lin C Y. Enveloping porphyrins for efficient dye-sensitized solar cells. Energy &amp; Environmental Sciences , 2012, 5(5): 6933–6940
doi: 10.1039/C2EE03308A
21 Chang Y C, Wang C L, Pan T Y, Hong S H, Lan C M, Kuo H H, Lo C F, Hsu H Y, Lin C Y, Diau E W G. A strategy to design highly efficient porphyrin sensitizers for dye-sensitized solar cells. Chemical Communications (Cambridge) , 2011, 47(31): 8910–8912
doi: 10.1039/c1cc12764k
22 Yella A, Lee H W, Tsao H N, Yi C, Chandiran A K, Nazeeruddin M K, Diau E W G, Yeh C Y, Zakeeruddin S M, Gr?tzel M. Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science , 2011, 334(6056): 629–634
doi: 10.1126/science.1209688 pmid:22053043
23 He J X, Guo F L, Li X, Wu W J, Yang J B, Hua J L. New bithiazole-based sensitizers for efficient and stable dye-sensitized solar cells. Chemistry, a European Journal (Weinheim an der Bergstrasse, Germany) , 2012, 18(25): 7903–7915
doi: 10.1002/chem.201103702 pmid:22573564
24 Zeng W D, Cao Y M, Bai Y, Wang Y H, Shi Y S, Zhang M, Wang F F, Pan C Y, Wang P. Efficient dye-sensitized solar cells with an organic photosensitizer featuring orderly conjugated ethylenedioxythiophene and dithienosilole blocks. Chemistry of Materials , 2010, 22(5): 1915–1925
doi: 10.1021/cm9036988
25 Choi H, Raabe I, Kim D, Teocoli F, Kim C, Song K, Yum J H, Ko J, Nazeeruddin M K, Gr?tzel M. High molar extinction coefficient organic sensitizers for efficient dye-sensitized solar cells. Chemistry, a European Journal (Weinheim an der Bergstrasse, Germany) , 2010, 16(4): 1193–1201
doi: 10.1002/chem.200902197 pmid:19998435
26 Ito S, Miura H, Uchida S, Takata M, Sumioka K, Liska P, Comte P, Pechy P, Gr?tzel M. High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye. Chemical Communications (Cambridge) , 2008, 41: 5194–5196
doi: 10.1039/b809093a
27 Wu Y Z, Marszalek M, Zakeeruddin S M, Zhang Q, Tian H, Gr?tzel M, Zhu W. High-conversion-efficiency organic dye-sensitized solar cells: molecular engineering on D–A–π-A featured organic indoline dyes. Energy &amp; Environmental Sciences , 2012, 5(8): 8261–8272
doi: 10.1039/C2EE22108J
28 Zhang M, Liu J G, Wang Y H, Zhou D F, Wang P. Redox couple related influences of π-conjugation extension in organic dye-sensitized mesoscopic solar cells. Chemical Science , 2011, 2(7): 1401–1406
doi: 10.1039/c1sc00199j
29 Cao Y M, Cai N, Wang Y L, Li R Z, Yuan Y, Wang P. Modulating the assembly of organic dye molecules on titania nanocrystals via alkyl chain elongation for efficient mesoscopic cobalt solar cells. Physical Chemistry Chemical Physics , 2012, 14(23): 8282–8286
doi: 10.1039/c2cp41314k pmid:22576331
30 Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Gr?tzel M, Park N G. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific Reports , 2012, 2: 591
doi: 10.1038/srep00591 pmid:22912919
31 Li J Y, Chen C Y, Chen J G, Tan C J, Lee K M, Wu S J, Tung Y L, Tsai H H, Ho K C, Wu C G. Heteroleptic ruthenium antenna-dye for high-voltage dye-sensitized solar cells. Journal of Materials Chemistry , 2010, 20(34): 7158–7164
doi: 10.1039/c0jm01418d
32 Chen C Y, Wu S J, Li J Y, Wu C G, Chen J G, Ho K C. A new route to enhance the light-harvesting capability of ruthenium complexes for dye-sensitized solar cells. Advanced Materials , 2007, 19(22): 3888–3891
doi: 10.1002/adma.200701111
33 Chen C Y, Pootrakulchote N, Wu S J, Wang M K, Li J Y, Tsai J H, Wu C G, Zakeeruddin S M, Gr?tzel M. New ruthenium sensitizer with carbazole antennas for efficient and stable thin-film dye-sensitized solar cells. Journal of Physical Chemistry C , 2009, 113(48): 20752–20757
doi: 10.1021/jp9089084
34 Zhu S S, Kingsborough R P, Swager T M. Conducting redox polymers: investigations of polythiophene-Ru(bpy)3n+ hybrid materials. Journal of Materials Chemistry , 1999, 9(9): 2123–2131
doi: 10.1039/a903193f
35 Nazeeruddin M K, Baranoff E, Gr?tzel M. Dye-sensitized solar cells: a brief overview. Solar Energy , 2011, 85(6): 1172–1178
doi: 10.1016/j.solener.2011.01.018
36 Wadman S H, Kroon J M, Bakker K, Lutz M, Spek A L, Klin G P M, Koten G. Cyclometalated ruthenium complexes for sensitizing nanocrystalline TiO2 solar cells. Chemical Communications (Cambridge) , 2007, 19(19): 1907–1909
doi: 10.1039/b703636a
37 Wu K L, Ku W P, Wang S W, Yella A, Chi Y, Liu S H, Chou P T, Nazeeruddin M K, Gr?tzel M. Thiocyanate-free Ru(II) sensitizers with a 4,4′-dicarboxyvinyl-2,2′-bipyridine anchor for dye-sensitized solar cells. Advanced Functional Materials , 2013, 23(18): 2285–2294
doi: 10.1002/adfm.201201876
38 Wu K L, Ku W P, Clifford J N, Palomares E, Ho S T, Chi Y, Liu S H, Chou P T, Nazeeruddin M K, Gr?tzel M. Harnessing the open-circuit voltage via a new series of Ru(II) sensitizers bearing (iso-)quinolinyl pyrazolate ancillarie. Energy &amp; Environmental Sciences , 2013, 6: 859–870
doi: 10.1039/C2EE23988D
39 Bomben P G, Robson K C D, Koivisto B D, Berlinguette C P. Cyclometalated ruthenium chromophores for the dye-sensitized solar cell. Coordination Chemistry Reviews , 2012, 256(15-16): 1438–1450
doi: 10.1016/j.ccr.2012.02.005
40 Hsu C W, Ho S T, Wu K L, Chi Y, Liu S H, Chou P T.Ru(II) sensitizers with a tridentate heterocyclic cyclometalate for dye-sensitized solar cells. Energy &amp; Environmental Sciences , 2012, 5(6): 7549–7554 β0.1039/C2EE21091F
41 Wu K L, Li C H, Chi Y, Clifford J N, Cabau L, Palomares E, Cheng Y M, Pan H A, Chou P T. Dye molecular structure device open-circuit voltage correlation in Ru(II) sensitizers with heteroleptic tridentate chelates for dye-sensitized solar cells. Journal of the American Chemical Society , 2012, 134(17): 7488–7496
doi: 10.1021/ja300828f pmid:22506606
42 Imahori H, Umeyama T, Ito S. Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells. Accounts of Chemical Research , 2009, 42(11): 1809–1818
doi: 10.1021/ar900034t pmid:19408942
43 Panda M K, Ladomenou K, Coutsolelos A G. Porphyrins in bio-inspired transformations: light-harvesting to solar cell. Coordination Chemistry Reviews , 2012, 256(21-22): 2601–2627
doi: 10.1016/j.ccr.2012.04.041
44 Campbell W M, Burrell A K, Officer D L, Jolley K W. Porphyrins as light harvesters in the dye-sensitised TiO2 solar cell. Coordination Chemistry Reviews , 2004, 248(13-14): 1363–1379
doi: 10.1016/j.ccr.2004.01.007
45 He H, Gurung A, Si L P. 8-hydroxylquinoline as a strong alternative anchoring group for porphyrin-sensitized solar cells. Chemical Communications (Cambridge) , 2012, 48(47): 5910–5912
doi: 10.1039/c2cc31440a
46 Lammi R K, Wagner R W, Ambroise A, Diers J R, Bocian D F, Holten D, Lindsey J S. Mechanisms of excited-state energy-transfer gating in linear versus branched multiporphyrin arrays. Journal of Physical Chemistry B , 2001, 105(22): 5341–5352
doi: 10.1021/jp010857y
47 Lee C W, Lu H P, Lan C M, Huang Y L, Liang Y R, Yen W N, Liu Y C, Lin Y S, Diau E W G, Yeh C Y. Novel zinc porphyrin sensitizers for dye-sensitized solar cells: synthesis and spectral, electrochemical, and photovoltaic properties. Chemistry, a European Journal (Weinheim an der Bergstrasse, Germany) , 2009, 15(6): 1403–1412
doi: 10.1002/chem.200801572 pmid:19097125
48 Lu H P, Tsai C Y, Yen W N, Hsieh C P, Lee C W, Yeh C Y, Diau E W G. Control of dye aggregation and electron injection for highly efficient porphyrin sensitizers adsorbed on semiconductor films with varying ratios of coadsorbate. Journal of Physical Chemistry C , 2009, 113(49): 20990–20997
doi: 10.1021/jp908100v
49 Li L L, Diau E W G. Porphyrin-sensitized solar cells. Chemical Society Reviews , 2013, 42(1): 291–304
doi: 10.1039/c2cs35257e pmid:23023240
50 Tanaka M, Hayashi S, Eu S, Umeyama T, Matano Y, Imahori H. Novel unsymmetrically π-elongated porphyrin for dye-sensitized TiO2 cells. Chemical Communications (Cambridge) , 2007, 20: 2069–2071
doi: 10.1039/b702501g
51 Liu Y Z, Lin H, Dy J T, Tamaki K, Nakazaki J, Nakayama D, Uchida S, Kubo T, Segawa H. N-fused carbazole–zinc porphyrin–free-base porphyrin triad for efficient near-IR dye-sensitized solar cells. Chemical Communications (Cambridge) , 2011, 47(13): 4010–4012
doi: 10.1039/c0cc03306e
52 Mai C L, Huang W K, Lu H P, Lee C W, Chiu C L, Liang Y R, Diau E W G, Yeh C Y. Synthesis and characterization of diporphyrin sensitizers for dye-sensitized solar cells. Chemical Communications (Cambridge) , 2010, 46(5): 809–811
doi: 10.1039/b917316a
53 Mozer A J, Wagner P, Officer D L, Wallace G G, Campbell W M, Miyashita M, Sunahara K, Mori S. The origin of open circuit voltage of porphyrin-sensitised TiO2 solar cells. Chemical Communications (Cambridge) , 2008, 39: 4741–4743
doi: 10.1039/b805027a
54 Tsao H N, Yi C Y, Moehl T, Yum J H, Zakeeruddin S M, Nazeeruddin M K, Gr?tzel M. Cyclopentadithiophene bridged donor-acceptor dyes achieve high power conversion efficiencies in dye-sensitized solar cells based on the tris-cobalt bipyridine redox couple. ChemSusChem , 2011, 4(5): 591–594
doi: 10.1002/cssc.201100120 pmid:21557495
55 Lu J F, Xu X B, Li Z H, Cao K, Cui J, Zhang Y B, Shen Y, Li Y, Zhu J, Dai S Y, Chen W, Cheng Y B, Wang M K. Zinc porphyrins with a pyridine-ring-anchoring group for dye-sensitized solar cells. Chemistry, an Asian Journal , 2013, 8(5): 956–962
doi: 10.1002/asia.201201136 pmid:23424179
56 Mishra A, Fischer M K R, Bruerle P. Metallfreie organische farbstoffe für farbstoffsensibilisierte solarzellen-von struktur-eigenschafts-beziehungen zu designregeln. Angewandte Chemie , 2009, 121(14): 2510–2536
doi: 10.1002/ange.200804709
57 Wang X F, Tamiaki H. based molecules for Cyclic tetrapyrroledye-sensitized solar cells. Energy &amp; Environmental Sciences , 2010, 3(1): 94–106
doi: 10.1039/B918464C
58 Ning Z J, Fu Y, Tian H. Improvement of dye -sensitized solar cells : what we know and what we need to know. Energy &amp; Environmental Sciences , 2010, 3(9): 1170–1181
doi: 10.1039/C003841E
59 Fang Z, Eshbaugh A A, Schanze K S. Low-bandgap donor-acceptor conjugated polymer sensitizers for dye-sensitized solar cells. Journal of the American Chemical Society , 2011, 133(9): 3063–3069
doi: 10.1021/ja109926k pmid:21306160
60 He J X, Wu W J, Hua J L, Jiang Y H, Qu S Y, Li J, Long Y T, Tian H. Bithiazole-bridged dyes for dye-sensitized solar cells with high open circuit voltage performance. Journal of Materials Chemistry , 2011, 21(16): 6054–6062
doi: 10.1039/c0jm03811c
61 Xu W, Peng B, Chen J, Liang M, Cai F S. New triphenylamine-based dyes for dye-sensitized solar cells. Journal of Physical Chemistry C , 2008, 112(3): 874–880
doi: 10.1021/jp076992d
62 Zhang G L, Bai Y, Li R Z, Shi D, Wenger S, Zakeeruddin S M, Gr?tzel M, Wang P. Employ a bisthienothiophene linker to construct an organic chromophore for efficient and stable dye-sensitized solar cells. Energy &amp; Environmental Sciences , 2009, 2(1): 92–95
doi: 10.1039/B817990E
63 Liu J Y, Zhou D F, Xu M F, Jing X Y, Wang P. The structure–property relationship of organic dyes in mesoscopic titania solar cells : only one double-bond difference. Energy &amp; Environmental Sciences , 2011, 4(9): 3545–3551
doi: 10.1039/C1EE01849C
64 Zhu X Z, Tsuji H, Yella A, Chauvin A S, Gr?tzel M, Nakamura E. New sensitizers for dye-sensitized solar cells featuring a carbon-bridged phenylenevinylene. Chemical Communications (Cambridge) , 2013, 49(6): 582–584
doi: 10.1039/c2cc37124c
65 Choi H, Baik C, Kang S O, Ko J, Kang M S, Nazeeruddin M K, Gr?tzel M. Highly efficient and thermally stable organic sensitizers for solvent-free dye-sensitized solar cells. Angewandte Chemie International Edition , 2008, 47(2): 327–330
doi: 10.1002/anie.200703852
66 Lim K, Kim C, Song J, Yu T, Lim W, Song K, Wang P, Zu N, Ko J. Enhancing the performance of organic dye-sensitized solar cells via a slight structure modification. Journal of Physical Chemistry C , 2011, 115(45): 22640–22646
doi: 10.1021/jp2070776
67 Kim S, Lee J K, Kang S O, Ko J, Yum J H, Frantacci S, Angelis F D, Censo D D, Nazeeruddin M K, Gr?tzel M. Molecular engineering of organic sensitizers for solar cell applications. Journal of the American Chemical Society , 2006, 128(51): 16701–16707
doi: 10.1021/ja066376f pmid:17177420
68 Zhu W H, Wu Y Z, Wang S T, Li W Q, Li X, Chen J, Wang Z S, Tian H. Organic D-A-π-A solar cell sensitizers with improved stability and spectral response. Advanced Functional Materials , 2011, 21(4): 756–763
doi: 10.1002/adfm.201001801
69 Wu Y Z, Zhang X, Li W Q, Wang Z S, Tian H, Zhu W H. Hexylthiophene-featured D-A-π-A structural indoline chromophores for coadsorbent-free and panchromatic dye-sensitized solar cells. Advanced Energy Materials , 2012, 2(1): 149–156
doi: 10.1002/aenm.201100341
70 Liang M, Chen J. Arylamine organic dyes for dye-sensitized solar cells. Chemical Society Reviews , 2013, 42(8): 3453–3488
doi: 10.1039/c3cs35372a pmid:23396530
71 Boschloo G, Hagfeldt A. Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells. Accounts of Chemical Research , 2009, 42(11): 1819–1826
doi: 10.1021/ar900138m pmid:19845388
72 O’Regan B C, López-Duarte I, Martínez-Díaz M V, Forneli A, Albero J, Morandeira A, Palomares E, Torres T, Durrant J R. Catalysis of recombination and its limitation on open circuit voltage for dye sensitized photovoltaic cells using phthalocyanine dyes. Journal of the American Chemical Society , 2008, 130(10): 2906–2907
doi: 10.1021/ja078045o pmid:18281988
73 Hagfeldt A, Gr?tzel M. Light-induced redox reactions in nanocrystalline systems. Chemical Reviews , 1995, 95(1): 49–68
doi: 10.1021/cr00033a003
74 Mitzi D B. Organic-inorganic perovskites containing trivalent metal halide layers: the templating influence of the organic cation layer. Inorganic Chemistry , 2000, 39(26): 6107–6113
doi: 10.1021/ic000794i pmid:11151511
75 Gr?tzel C, Zakeeruddin S M. Recent trends in mesoscopic solar cells based on molecular and nanopigment light harvesters. Materials Today , 2013, 6(1-2): 11–18
doi: 10.1016/j.mattod.2013.01.020
76 Poglitsch A, Weber D. Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter-wave spectroscopy. Journal of Chemical Physics , 1987, 87(11): 6373–6378
doi: 10.1063/1.453467
77 Mitzi D B, Field C A, Schlesinger Z, Laibowitz R B. Transport, optical, and magnetic properties of the conducting halide perovskite CH3NH3SnI3. Journal of Solid State Chemistry , 1995, 114(1): 159–163
doi: 10.1006/jssc.1995.1023
78 Yamada K, Kuranaga Y, Ueda K, Goto S, Okuda T, Furukawa Y. Phase transition and electric conductivity of ASnCl3 (A= Cs and CH3NH3). Bulletin of the Chemical Society of Japan , 1998, 71(1): 127–134
doi: 10.1246/bcsj.71.127
79 Mitzi D B, Feild C A, Harrison W T A, Guloy A M. Conducting tin halides with a layered organic-based perovskite structure. Nature , 1994, 369(6480): 467–469
doi: 10.1038/369467a0
80 Billing D G, Llemmerer A. Synthesis and crystal structures of inorganic-organic hybrids incorporating an aromatic amine with a chiral functional group. CrystEngComm , 2006, 8(9): 686–695
doi: 10.1039/b606987h
81 Zhang S J, Lanty G, Lauret J S, Deleporte E, Audebert P, Galmiche L. Synthesis and optical properties of novel organic–inorganic hybrid nanolayer structure semiconductors. Acta Materialia , 2009, 57(11): 3301–3309
doi: 10.1016/j.actamat.2009.03.037
82 Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society , 2009, 131(17): 6050–6051
doi: 10.1021/ja809598r pmid:19366264
83 Im J H, Lee C R, Lee J W, Park S W, Park N G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale , 2011, 3(10): 4088–4093
doi: 10.1039/c1nr10867k pmid:21897986
84 Chung I, Lee B, He J Q, Chang R P H, Kanatzidis M G. All-solid-state dye-sensitized solar cells with high efficiency. Nature , 2012, 485(7399): 486–489
doi: 10.1038/nature11067 pmid:22622574
85 Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science , 2012, 338(6107): 643–647
doi: 10.1126/science.1228604 pmid:23042296
86 Etgar L, Gao P, Xue Z S, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Gr?tzel M. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. Journal of the American Chemical Society , 2012, 134(42): 17396–17399
doi: 10.1021/ja307789s pmid:23043296
[1] Yulia S. MAKLYGINA, Alexei S. SKOBELTSIN, Tatiana A. SAVELIEVA, Galina V. PAVLOVA, Ivan V. CHEKHONIN, Olga I. GURINA, Anastasiya A. Chernysheva, Sergey A. Cherepanov, Victor B. LOSCHENOV. Study of possibility of cell recognition in brain tumors[J]. Front. Optoelectron., 2020, 13(4): 371-380.
[2] Dmitry V. YAKOVLEV, Dina S. FARRAKHOVA, Artem A. SHIRYAEV, Kanamat T. EFENDIEV, Maxim V. LOSCHENOV, Liana M. AMIRKHANOVA, Dmitry O. KORNEV, Vladimir V. LEVKIN, Igor V. RESHETOV, Victor B. LOSCHENOV. New approaches to diagnostics and treatment of cholangiocellular cancer based on photonics methods[J]. Front. Optoelectron., 2020, 13(4): 352-359.
[3] Rashad F. KAHWAGI, Sean T. THORNTON, Ben SMITH, Ghada I. KOLEILAT. Dimensionality engineering of metal halide perovskites[J]. Front. Optoelectron., 2020, 13(3): 196-224.
[4] Zhining WAN, Mi XU, Zhengyang FU, Da LI, Anyi MEI, Yue HU, Yaoguang RONG, Hongwei HAN. Screen printing process control for coating high throughput titanium dioxide films toward printable mesoscopic perovskite solar cells[J]. Front. Optoelectron., 2019, 12(4): 344-351.
[5] Ru GE, Fei QIN, Lin HU, Sixing XIONG, Yinhua ZHOU. High fill factor over 82% enabled by a biguanide doping electron transporting layer in planar perovskite solar cells[J]. Front. Optoelectron., 2018, 11(4): 360-366.
[6] Xiaofan ZHANG, Man LIU, Weiqian KONG, Hongbo FAN. Recent advances in solar cells and photo-electrochemical water splitting by scanning electrochemical microscopy[J]. Front. Optoelectron., 2018, 11(4): 333-347.
[7] Tao YUAN, Zhonghuan CAO, Guoli TU. Indium tin oxide-free inverted polymer solar cells with ultrathin metal transparent electrodes[J]. Front. Optoelectron., 2017, 10(4): 402-408.
[8] Yinan ZHANG,Min GU. Plasmonic light trapping for wavelength-scale silicon solar absorbers[J]. Front. Optoelectron., 2016, 9(2): 277-282.
[9] Yuanyuan ZHOU,Hector F. GARCES,Nitin P. PADTURE. Challenges in the ambient Raman spectroscopy characterization of methylammonium lead triiodide perovskite thin films[J]. Front. Optoelectron., 2016, 9(1): 81-86.
[10] Xiaoyu ZHANG,Michael Grätzel,Jianli HUA. Donor design and modification strategies of metal-free sensitizers for highly-efficient n-type dye-sensitized solar cells[J]. Front. Optoelectron., 2016, 9(1): 3-37.
[11] Jie SHI,Zhaofei CHAI,Runli TANG,Huiyang LI,Hongwei HAN,Tianyou PENG,Qianqian LI,Zhen LI. Effect of electron-withdrawing groups in conjugated bridges: molecular engineering of organic sensitizers for dye-sensitized solar cells[J]. Front. Optoelectron., 2016, 9(1): 60-70.
[12] Qingsong LEI,Jiang LI. High conductive and transparent Al doped ZnO films for a-SiGe:H thin film solar cells[J]. Front. Optoelectron., 2015, 8(3): 298-305.
[13] Yue QIAN,Rong LIU,Xiujuan JIN,Bin LIU,Xianfu WANG,Jin XU,Zhuoran WANG,Gui CHEN,Junfeng CHAO. Optimised synthesis of close packed ZnO cloth and its applications in Li-ion batteries and dye-sensitized solar cells[J]. Front. Optoelectron., 2015, 8(2): 220-228.
[14] Kunpeng MA, Xiangbin ZENG, Qingsong LEI, Junming XUE, Yanzeng WANG, Chenguang ZHAO. Texturization and rounded process of silicon wafers for heterojunction with intrinsic thin-layer solar cells[J]. Front Optoelec, 2014, 7(1): 46-52.
[15] Heng WANG, Peng XIANG, Mi XU, Guanghui LIU, Xiong LI, Zhiliang KU, Yaoguang RONG, Linfeng LIU, Min HU, Ying YANG, Hongwei HAN. High efficiency monobasal solid-state dye-sensitized solar cell with mesoporous TiO2 beads as photoanode[J]. Front Optoelec, 2013, 6(4): 413-417.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed