|
|
|
Selective growth and characterization of ZnO nanorods assembled a hexagonal pattern on H2-decomposed GaN epilayer |
Yu TIAN1,2, Huiquan CHEN2, Xiaolong ZHU1( ), Guang ZHENG1, Jiangnan DAI2 |
| 1. Department of Physics, Jianghan University, Wuhan 430056, China; 2. Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China |
|
|
|
|
Abstract This paper reported a simple and effective method for fabricating and patterning highly ordered ZnO nanorod arrays on H2-decomposed GaN epilayer via hydrothermal route. The edge of pattern, which has been decomposed by H2 flow, provides appropriate nucleation sites for the selective-growth of aligned ZnO nanorods. The density of ZnO nanorod arrays assembled the hexagonal pattern can be tuned by varying the solution concentrations, growth time and reaction temperatures. The results have demonstrated that the ZnO nanorods are highly uniform in diameter and height with perfect alignment and are epitaxially grown along [0001] direction. This work provides a novel and accessible route to prepare oriented and aligned ZnO nanorod arrays pattern. And the aligned ZnO nanorods form an ideal hexagonal pattern that might be used in many potential applications of ZnO nanomaterials.
|
| Keywords
ZnO nanorod
GaN epilayer
hexagonal pattern
hydrothermal
|
|
Corresponding Author(s):
ZHU Xiaolong,Email:xlzhu.jhun@gmail.com
|
|
Issue Date: 05 December 2013
|
|
| 1 |
Wang X D, Song J H, Liu J, Wang Z L. Direct-current nanogenerator driven by ultrasonic waves. Science , 2007, 316(5821): 102-105 doi: 10.1126/science.1139366 pmid:17412957
|
| 2 |
Lee S W, Jeong M C, Myoung J M, Chae G S, Chung I J. Magnetic alignment of ZnO nanowires for optoelectronic device applications. Applied Physics Letters , 2007, 90(13): 133115 doi: 10.1063/1.2717575
|
| 3 |
Lee Y J, Ruby D S, Peters D W, McKenzie B B, Hsu J W P. ZnO nanostructures as efficient antireflection layers in solar cells. Nano Letters , 2008, 8(5): 1501-1505 doi: 10.1021/nl080659j pmid:18416581
|
| 4 |
Lin M S, Chen C C, Wang W C, Lin C F, Chang S Y. Fabrication of the selective-growth ZnO nanorods with a hole-array pattern on a p-type GaN:Mg layer through a chemical bath deposition process. Thin Solid Films , 2010, 518(24): 7398-7402 doi: 10.1016/j.tsf.2010.05.017
|
| 5 |
Xu S, Xu C, Liu Y, Hu Y F, Yang R S, Yang Q, Ryou J H, Kim H J, Lochner Z, Choi S, Dupuis R, Wang Z L. Ordered nanowire array blue/near-UV light emitting diodes. Advanced Materials , 2010, 22(42): 4749-4753 doi: 10.1002/adma.201002134 pmid:20862713
|
| 6 |
Ng H T, Han J, Yamada T, Nguyen P, Chen Y P, Meyyappan M. Single Crystal Nanowire Vertical Surround-Gate Field-Effect Transistor. Nano Letters , 2004, 4(7): 1247-1252 doi: 10.1021/nl049461z
|
| 7 |
Kim D S, Ji R, Fan H J, Bertram F, Scholz R, Dadgar A, Nielsch K, Krost A, Christen J, G?sele U, Zacharias M. Laser-interference lithography tailored for highly symmetrically arranged ZnO nanowire arrays. Small , 2007, 3(1): 76-80 doi: 10.1002/smll.200600307 pmid:17294473
|
| 8 |
Hochbaum A I, Fan R, He R, Yang P. Controlled growth of Si nanowire arrays for device integration. Nano Letters , 2005, 5(3): 457-460 doi: 10.1021/nl047990x pmid:15755094
|
| 9 |
Dong J J, Zhang X W, Yin Z G, Zhang S G, Wang J X, Tan H R, Gao Y, Si F T, Gao H L. Controllable Growth of Highly Ordered ZnO Nanorod Arrays via Inverted Self-Assembled Monolayer Template. Appl. Mater. Interfaces , 2011, 3(11): 4388-4395 doi: 10.1021/am2010288
|
| 10 |
Fan H J. B. Fuhrmann, R. Scholz, F. Syrowatka, A. Dadgar, A. Krost, M. Zacharias. Journal of Crystal Growth , 2006, 287: 34-38 doi: 10.1016/j.jcrysgro.2005.10.038
|
| 11 |
Zeng H B, Xu X J, Bando Y, Gautam U K, Zhai T Y, Fang X S, Liu B D, Golberg D. Template Deformation-Tailored ZnO Nanorod/Nanowire Arrays: Full Growth Control and Optimization of Field-Emission. Advanced Functional Materials , 2009, 19(19): 3165-3172 doi: 10.1002/adfm.200900714
|
| 12 |
Cheng C, Lei M, Feng L, Wong T L, Ho K M, Fung K K, Loy M M T, Yu D P, Wang N. High-quality ZnO nanowire arrays directly fabricated from photoresists. ACS Nano , 2009, 3(1): 53-58 doi: 10.1021/nn800527m pmid:19206248
|
| 13 |
Hong Y J, An S J, Jung H S, Lee C H, Yi G C. Position-Controlled Selective Growth of ZnO Nanorods on Si Substrates Using Facet-Controlled GaN Micropatterns. Advanced Materials , 2007, 19(24): 4416-4419 doi: 10.1002/adma.200701203
|
| 14 |
Hong Y J, Yoo J, Doh Y J, Kang S H, Kong K J, Kim M, Lee D R, Oh K H, Yi G C J. Controlled epitaxial growth modes of ZnO nanostructures using different substrate crystal planes. Materials Chemistry , 2009, 19(7): 941-947 doi: 10.1039/b816034a
|
| 15 |
Le H Q, Chua S J, Koh Y W, Loh K P, Chen Z, Thompson C V, Fitzgerald E A. Growth of single crystal ZnO nanorods on GaN using an aqueous solution method. Applied Physics Letters , 2005, 87(10): 101908 doi: 10.1063/1.2041833
|
| 16 |
Wei Y G, Wu W Z, Guo R, Yuan D J, Das S, Wang Z L. Wafer-scale high-throughput ordered growth of vertically aligned ZnO nanowire arrays. Nano Letters , 2010, 10(9): 3414-3419 doi: 10.1021/nl1014298 pmid:20681617
|
| 17 |
Tay C B, Le H Q, Chua S J, Loh K P J. Empirical Model for Density and Length Prediction of ZnO Nanorods on GaN Using Hydrothermal Synthesis. Electrochem Soc. , 2007, 154(9): K45 doi: 10.1149/1.2750449
|
| 18 |
Le H Q, Chua S J, Koh Y W, Loh K P, Fitzgerald E A. Systematic studies of the epitaxial growth of single-crystal ZnO nanorods on GaN using hydrothermal synthesis. Journal of Crystal Growth , 2006, 293(1): 36-42 doi: 10.1016/j.jcrysgro.2006.04.082
|
| 19 |
Gao H Y, Yan F W, Li J M, Zeng Y P, Wang J X. Synthesis and characterization of ZnO nanorods and nanoflowers grown on GaN-based LED epiwafer using a solution deposition method. Journal of Physics. D, Applied Physics , 2007, 40(12): 3654-3659 doi: 10.1088/0022-3727/40/12/015
|
| 20 |
Zhou H L, Shao P G, Chua S J, Kan J A, Bettiol A A, Osipowicz T, Ooi K F, Goh G K L, Watt F. Selective Growth of ZnO Nanorod Arrays on a GaN/Sapphire Substrate Using a Proton Beam Written Mask. Crystal Growth & Design , 2008, 8(12): 4445-4448 doi: 10.1021/cg800267v
|
| 21 |
Ye B U, Yu H, Kim M H, Lee J L, Baik J M. Modulating ZnO Nanostructure Arrays on Any Substrates by Nanolevel Structure Control. Journal of Physical Chemistry C , 2011, 115(16): 7987-7992 doi: 10.1021/jp201042t
|
| 22 |
Sun Y, Riley J, Ashfold M N R. Mechanism of ZnO Nanotube Growth by Hydrothermal Methods on ZnO Film-Coated Si Substrates. Journal of Physical Chemistry B , 2006, 110(31): 15186-15192 doi: 10.1021/jp062299z
|
| 23 |
Vispute R D, Talyansky V, Choopun S, Sharma R P, Venkatesan T, He M, Tang X, Halpern J B, Spencer M G, Li Y X, Salamanca-Riba L G, Iliadis A A, Jones K A. Heteroepitaxy of ZnO on GaN and its implications for fabrication of hybrid optoelectronic devices. Applied Physics Letters , 1998, 73(3): 348 doi: 10.1063/1.121830
|
| 24 |
Huang S Y, Yang J R. A Transmission Electron Microscopy Observation of Dislocations in GaN Grown on (0001) Sapphire by Metal Organic Chemical Vapor Deposition. Japanese Journal of Applied Physics , 2008, 47(10): 7998-8002 doi: 10.1143/JJAP.47.7998
|
| 25 |
Morin S A, Jin S. Screw dislocation-driven epitaxial solution growth of ZnO nanowires seeded by dislocations in GaN substrates. Nano Letters , 2010, 10(9): 3459-3463 doi: 10.1021/nl1015409 pmid:20718407
|
| 26 |
Ozgur U, Alivov Ya I, Liu C, Teke A, Reshchikov M A, Dogan S, Avrutin V, Cho S J, Morkoc H J. A comprehensive review of ZnO materials and devices. Journal of Applied Physics , 2005, 98(4): 041301 doi: 10.1063/1.1992666
|
| 27 |
Huang M H, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P. Room-temperature ultraviolet nanowire nanolasers. Science , 2001, 292(5523): 1897-1899 doi: 10.1126/science.1060367 pmid:11397941
|
| 28 |
Zhang J, Sun L D, Liao C S, Yang C H. A simple route towards tubular ZnO. Chemical Communications (Cambridge) , 2002, 3(3): 262-263 doi: 10.1039/b108863g
|
| 29 |
Li Z Q, Xiong Y J, Xie Y. Selected-control synthesis of ZnO nanowires and nanorods via a PEG-assisted route. Inorganic Chemistry , 2003, 42(24): 8105-8109 doi: 10.1021/ic034029q pmid:14632532
|
| 30 |
Chen S J, Liu Y C, Shao C L, Mu R, Lu Y M, Zhang J Y, Shen D Z, Fan X W. Structural and Optical Properties of Uniform ZnO Nanosheets. Advanced Materials , 2005, 17(5): 586-590 doi: 10.1002/adma.200401263
|
| 31 |
Zeng H, Duan G T, Li Y, Yang S K, Xu X X, Cai W P. Blue Luminescence of ZnO Nanoparticles Based on Non-Equilibrium Processes: Defect Origins and Emission Controls. Advanced Functional Materials , 2010, 20(4): 561 -572 doi: 10.1002/adfm.200901884
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|