Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec    2014, Vol. 7 Issue (1) : 28-36    https://doi.org/10.1007/s12200-013-0367-1
REVIEW ARTICLE
Recent progress of traditional Chinese medical science based on theory of biophoton
Xiuxiu WANG1, Jinzhao HUANG1(), Jinxiang HAN2(), Meina YANG2, Jingxiang PANG2, Xiaolei ZHAO2
1. School of Physics and Technology, University of Jinan, Jinan 250022, China; 2. Shandong Medicinal Biotechnology Center, Key Laboratory for Biotech-Drugs of the Ministry of Health, Jinan 250062, China
 Download: PDF(260 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

With the development of biophotonics, biophoton detection technology has been appropriately used. In this paper, the main features and fundamental conceptions of biophotonics were introduced basically. Then the coherence theory of biophoton emission was reviewed. Furthermore, based on this coherence concept, the quantum theory of traditional Chinese medicine (TCM) and properties of Chinese medicinal herbs were presented. To show the nature of biophoton emission in living systems and clarify its basic detection mechanism, high sensitive detection system which allows non-invasive and non-destructive (or less) recording was finally presented.

Keywords biophoton      traditional Chinese medicine (TCM)      syndrome      meridian      Chinese herbs      detection technology     
Corresponding Author(s): HUANG Jinzhao,Email:jzhuangjz@hotmail.com, ss_huangjinzhao@ujn.edu.cn; HAN Jinxiang,Email:samshjx@sina.com   
Issue Date: 05 March 2014
 Cite this article:   
Xiuxiu WANG,Jinzhao HUANG,Jinxiang HAN, et al. Recent progress of traditional Chinese medical science based on theory of biophoton[J]. Front Optoelec, 2014, 7(1): 28-36.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-013-0367-1
https://academic.hep.com.cn/foe/EN/Y2014/V7/I1/28
Fig.1  An optical resonator as the model of biologic system [, page 29–33]
Fig.2  Energy level structure of exciplex system. (a) Potential energy curve of biomolecular with exciplex formation. “Σ*” represents the bond excited state and “Σ” represents the repulsive ground state. “” denotes energy and “” denotes distance of monomer; (b) four-level model; and (c) three-level model [, page 36–37]
Fig.3  Relationship between terrestrial magnetism activity (∑) and disease morbidity. (a) Morbidity of infantile paralysis in Japan; (b) mortality of smallpox in Australia; (c) morbidity of dysentery in the world; (d) morbidity of scarlatina in Leningrad [34]
Fig.4  Spherical coordinate system [30]
Fig.5  Value calculation of the three-dimensional observation [30]
Fig.6  (a) Photon emission intensity of one patient’ fingers with acute bronchitis; (b) photon emission intensity of fingers after eight days’ treatment [, page 307–310]
1 Gu Q. Quantum theory of biophoton emission. In: Popp F A, Li K H, Gu Q. Recent Advances in Biophoton Research and Its Applications . Singapore: World Scientific, 1992, 59–112
2 Ruth B. Experimental investigation on ultraweak photon emission. In: Popp F A, Becker G, Konig H L, Peschka W. Electromagnetic Bio-Information . München: Urban & Schwarzenberg, 1979, 107–122
3 Korneev A, Vachtomin Y, Minaeva O, Divochiy A, Smirnov K, Okunev O, Gol'tsman G, Zinoni C, Chauvin N, Balet L, Marsili F, Bitauld D, Alloing B, Li L H, Fiore A, Lunghi L, Gerardino A, Halder M, Jorel C, Zbinden H. Single-photon detection system for quantum optics applications. IEEE Journal on Selected Topics in Quantum Electronics , 2007, 13(4): 944–951
doi: 10.1109/JSTQE.2007.903856
4 Tafur J, van Wijk E P A, van Wijk R, Mills P J. Biophoton detection and low-intensity light therapy: a potential clinical partnership. Photomedicine and Laser Surgery , 2010, 28(1): 23–30
doi: 10.1089/pho.2008.2373 pmid:19754267
5 Chwirot W B. New indications of possible role of DNA in ultraweak photon emission from biological systems. Journal of Plant Physiology , 1986, 122(1): 81–86
doi: 10.1016/S0176-1617(86)80086-4
6 Staninski K, Kaczmarek M, Lis S, Komar D, Szyczewski A. Spectral analysis in ultraweak emissions of chemi- and electrochemiluminescence systems. Journal of Rare Earths , 2009, 27(4): 593–597
doi: 10.1016/S1002-0721(08)60295-1
7 Musumeci F, Applegate L A, Privitera G, Scordino A, Tudisco S, Niggli H J. Spectral analysis of laser-induced ultraweak delayed luminescence in cultured normal and tumor human cells: temperature dependence. Journal of Photochemistry and Photobiology B, Biology , 2005, 79(2): 93–99
doi: 10.1016/j.jphotobiol.2004.12.002 pmid:15878114
8 Dotta B T, Buckner C A, Cameron D, Lafrenie R F, Persinger M A. Biophoton emissions from cell cultures: biochemical evidence for the plasma membrane as the primary source. General Physiology and Biophysics , 2011, 30(3): 301–309
pmid:21952440
9 Kokubo H, Yamamoto M, Kawano K. Magnetic stimuli for pieces of cucumber quantitative measurement using biophotons. Journal of International Society of Life Information Science , 2008, 26(2): 213–217
10 Niggli H J. Temperature dependence of ultraweak photon emission in fibroblastic differentiation after irradiation with artificial sunlight. Indian Journal of Experimental Biology , 2003, 41(5): 419–423
pmid:15244262
11 Katsumata M, Takeuchi A, Kazumura K, Koike T. New feature of delayed luminescence: preillumination-induced concavity and convexity in delayed luminescence decay curve in the green alga Pseudokirchneriella subcapitata. Journal of Photochemistry and Photobiology B, Biology , 2008, 90(3): 152–162
doi: 10.1016/j.jphotobiol.2007.12.005 pmid:18255310
12 Galle M, Neurohr R, Altmann G, Popp F A, Nagl W. Biophoton emission from daphnia magna: a possible factor in the self-regulation of swarming. Experientia , 1991, 47(5): 457–460
doi: 10.1007/BF01959943
13 Rattemeyer M, Popp F A, Nagl W. Evidence of photon emission from DNA in living systems. Naturwissenschaften , 1981, 68(11): 572–573
doi: 10.1007/BF00401671 pmid:7322208
14 Seliger H H. The origin of bioluminescence. Photochemistry and Photobiology , 1975, 21(5): 355–361
doi: 10.1111/j.1751-1097.1975.tb06684.x pmid:1108059
15 Zhuravlev A I, Trainin V M. Chemiluminescent reactions in the Belousov-Zhabotinskii oscillating system. Journal of Bioluminescence and Chemiluminescence , 1990, 5(4): 227–234
doi: 10.1002/bio.1170050404 pmid:2251937
16 Popp F A. On the coherence of ultraweak photon emission from living tissues. In: Kilmister C W. Disequilibrium and Self-Organisation. Dordrecht , Boston: Kluwer Academic Publishers, 1986, 207–230
17 Prigogine I, Nicolis G, Babloyantz A. Thermodynamics of evolution. Physics Today , 1972, 25(11): 23–28
doi: 10.1063/1.3071090
18 Gueron M, Eisinger J, Lamola A A. Excited states of nucleic acids. In: Paul O P, Ts O. Basic Principles in Nucleic Acid Chemistry . New York and London: Academic Press, 1976, 311–398
19 Popp F A. Photon-storage in biological systems. In: Popp F A, Becker G, Konig H L, Peschka W. Electromagnetic Bio-Information. Urban & Schwarzenberg , 1979, 123–149
20 Zhang J Z, Popp F A, Yu W D. Communication between dinoflagellates by means of photon emission. In: Beloussov L V, Popp F A. Biophotonics . Moscow: Bioinform Services Co, 1995, 317–330
21 Popp F A, Nagl W, Li K H, Scholz W, Weing?rtner O, Wolf R. Biophoton emission. New evidence for coherence and DNA as source. Cell Biophysics , 1984, 6(1): 33–52
pmid:6204761
22 Fr?hlich H. Long-range coherence and energy storage in biological systems. International Journal of Quantum Chemistry , 1968, 2(5): 641–649
doi: 10.1002/qua.560020505
23 Popp F A. Principles of complementary medicine in terms of a suggested scientific basis. Indian Journal of Experimental Biology , 2008, 46(5): 378–383
pmid:18697623
24 Yang J M, Choi C, Hyun-hee, Woo W M, Yi S H, Soh K S, Yang J S, ChoiC. Left-right and Yin-Yang balance of biophoton emission from hands. Acupuncture & Electro-Therapeutics Research , 2004, 29(3–4): 197–211
pmid:15807101
25 van Wijk E P, Wijk R V, Bajpai R P, van der Greef J. Statistical analysis of the spontaneously emitted photon signals from palm and dorsal sides of both hands in human subjects. Journal of Photochemistry and Photobiology B, Biology , 2010, 99(3): 133–143
doi: 10.1016/j.jphotobiol.2010.03.008 pmid:20417114
26 Choi C, Woo W M, Lee M B, Yang J S, Soh K S, Yang J S, Yoon G, Kim M, Zaslawsky C, Chang J J. Biophoton emission from the hands. Journal of the Korean Physical Society , 2002, 41(2): 275–278
27 Soh K S. Bonghan duct and acupuncture meridian as optical channel of biophoton. Journal of the Korean Physical Society , 2004, 45(5): 1196–1198
28 Popp F A, Maric-Oehler W, Schlebusch K P, Klimek W. Evidence of light piping (meridian-like channels) in the human body and nonlocal EMF effects. Electromagnetic Biology and Medicine , 2005, 24(3): 359–374
doi: 10.1080/15368370500381760
29 Pang X F. Bioelectromagnetics. Beijing: National Defense Industry Press, 2008, 1 (in Chinese)
30 Han J X. Meridian is a three-dimensional network from bio-electromagnetic radiation interference: an interference hypothesis of meridian. Cell Biochemistry and Biophysics , 2012, 62(2): 297–303
doi: 10.1007/s12013-011-9301-6 pmid:21960421
31 Gu Q. Biophotonics. 2nd ed. Beijing: Science Press, 2012 (in Chinese)
32 Han J X, Huang J Z. Mathematical model of biological order state or syndrome in traditional Chinese medicine: based on electromagnetic radiation within the human body. Cell Biochemistry and Biophysics , 2012, 62(2): 377–381
doi: 10.1007/s12013-011-9309-y pmid:22052002
33 Han J X, Han Y. Scientific connotation of “heaven-human correspondence”. Chinese Journal of Ethnomedicine and Ethnopharmacy , 2010, 19(16): 63–65 (in Chinese)
34 Xu W Y. Phyisics of Electromagnetic Phenomena of the Earth. Anhui: Press of University of Science and Technology of China , 2009, 537–540 (in Chinese)
35 Han J X, Yang M N, Chen Y. Quantum: may be a new-found messenger in biological systems. Bioscience Trends , 2011, 5(3): 89–92
doi: 10.5582/bst.2011.v5.3.89 pmid:21788692
36 Yang H Q, Xie S S, Li H, Wang Y H. On optics of human meridians. Science in China Series G: Physics, Mechanics and Astronomy , 2009, 52(4): 502–507
doi: 10.1007/s11433-009-0080-7
37 Schlebusch K P, Maric-Oehler W, Popp F A. Biophotonics in the infrared spectral range reveal acupuncture meridian structure of the body. Journal of Alternative and Complementary Medicine (New York, N.Y.) , 2005, 11(1): 171–173
doi: 10.1089/acm.2005.11.171 pmid:15750378
38 Yan Z Q, Shi Y, Wang Y, Huang G, Jin B, Tang W. Studies on high luminescence of 14 major channels. Study Acupuncture , 1989, 8: 389–392 (in Chinese)
39 Han J X. Studying scientific connotations of traditional Chinese herbal property theory. Chinese Archives of Traditional Chinese Medicine , 2011, 29(9): 1937–1939 (in Chinese)
40 van Wijk R, van Aken H, Mei W P, Popp F A. Light-induced photon emission by mammalian cells. Journal of Photochemistry and Photobiology B, Biology , 1993, 18(1): 75–79
doi: 10.1016/1011-1344(93)80042-8 pmid:8487126
41 van Wijk R, Kobayashi M, van Wijk E P. Anatomic characterization of human ultra-weak photon emission with a moveable photomultiplier and CCD imaging. Journal of Photochemistry and Photobiology B, Biology , 2006, 83(1): 69–76
doi: 10.1016/j.jphotobiol.2005.12.005 pmid:16413197
42 Woodward S A, Janky D M, Harms R H. The influence of light on egg yolk. Poultry Science , 1986, 65(3): 508–510
doi: 10.3382/ps.0650508
43 Lambing K. Biophoton measurement as a supplement to the conventional consideration of food quality. In: Popp F A, Li K H, Gu Q. Recent Advances in Biophoton Research and Its Applications . Singapore, New Jersey, London, Hong Kong: World Scientific, 1992, 393–413
44 Winkler R, Guttenberger H, Klima H. Ultraweak and induced photon emission after wounding of plants. Photochemistry and Photobiology , 2009, 85(4): 962–965
doi: 10.1111/j.1751-1097.2009.00537.x pmid:19254235
45 Khatoon A, Rehman S, Hiraga S, Makino T, Komatsu S. Organ-specific proteomics analysis for identification of response mechanism in soybean seedlings under flooding stress. Journal of Proteomics , 2012, 75(18): 5706–5723
doi: 10.1016/j.jprot.2012.07.031 pmid:22850269
46 Cohen S, Popp F A. Biophoton emission of human body. Indian Journal of Experimental Biology , 2003, 41(5): 440–445
pmid:15244265
47 Kim H W, Sim S B, Kim C K, Kim J, Choi C, You H, Soh K S. Spontaneous photon emission and delayed luminescence of two types of human lung cancer tissues: adenocarcinoma and squamous cell carcinoma. Cancer Letters , 2005, 229(2): 283–289
doi: 10.1016/j.canlet.2005.04.038 pmid:16111805
48 Chen P, Zhang L, Zhang F, Liu J T, Bai H, Tang G Q, Lin L. Spectral discrimination between normal and leukemic human sera using delayed luminescence. Biomedical Optics Express , 2012, 3(8): 1787–1792
doi: 10.1364/BOE.3.001787 pmid:22876344
49 Grasso F, Grillo C, Musumeci F, Triglia A, Rodolico G, Cammisuli F, Rinzivillo C, Fragati G, Santuccio A, Rodolico M. Photon emission from normal and tumor human tissues. Experientia , 1992, 48(1): 10–13
doi: 10.1007/BF01923595 pmid:1737569
50 Amano T, Kobayashi M, Devaraj B, Usa M, Inaba H. Ultraweak biophoton emission imaging of transplanted bladder cancer. Urological Research , 1995, 23(5): 315–318
doi: 10.1007/BF00300020 pmid:8839388
51 van Wijk R, Schamhart D H J. Regulatory aspects of low intensity photon emission. Experientia , 1988, 44(7): 586–593
doi: 10.1007/BF01953306 pmid:3294034
52 Park S H, Kim J, Koo T H. Magneto-acupuncture stimuli effects on ultraweak photon emission from hands of healthy persons. Journal of Acupuncture and Meridian Studies. , 2009, 2(1): 40–48
doi: 10.1016/S2005-2901(09)60014-5 pmid:20633473
53 Kim T J, Nam K W, Shin H S, Lee S M, Yang J S, Soh K S. Biophoton emission from fingernails and fingerprints of living human subjects. Acupuncture & Electro-Therapeutics Research , 2002, 27(2): 85–94
pmid:12269722
[1] Ronald SROKA, Nikolas DOMINIK, Max EISEL, Anna ESIPOVA, Christian FREYMÜLLER, Christian HECKL, Georg HENNIG, Christian HOMANN, Nicolas HOEHNE, Robert KAMMERER, Thomas KELLERER, Alexander LANG, Niklas MARKWARDT, Heike POHLA, Thomas PONGRATZ, Claus-Georg SCHMEDT, Herbert STEPP, Stephan STRÖBL, Keerthanan ULAGANATHAN, Wolfgang ZIMMERMANN, Adrian RUEHM. Research and developments of laser assisted methods for translation into clinical application[J]. Front. Optoelectron., 2017, 10(3): 239-254.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed