Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec    2014, Vol. 7 Issue (1) : 107-109    https://doi.org/10.1007/s12200-013-0373-3
RAPID COMMUNICATION
Laser diode corner pumped Nd:KGW slab laser
H. AMAN1(), B. HUSSAIN1,2, A. AMAN3
1. Diode-Pumped Solid-State Laser Lab, National Institute of Lasers & Optronics, Islamabad, Pakistan; 2. Department of Electrical and Computer Engineering, University of North Carolina, Charlotte, USA; 3. Department of Computer System Engineering, Mirpur University of Science and Technology, Mirpur, Pakistan
 Download: PDF(117 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper reports the continuous wave (CW) and Q-switched operation of a diode pumped KGd (WO4):Nd (Nd:KGW) slab laser with a corner pumped geometry at the wavelength of 1067 nm. With an optical conversion efficiency of 38% and 34%, average powers of 23 and 20 W in CW and Q-switched modes were achieved respectively. The maximum pulse energy of 27 mJ was observed with a repetition rate of 840 Hz.

Keywords laser engineering      KGd (WO4):Nd (Nd:KGW) laser      diode-pumped slab laser     
Corresponding Author(s): AMAN H.,Email:haroon111@gmail.com   
Issue Date: 05 March 2014
 Cite this article:   
H. AMAN,B. HUSSAIN,A. AMAN. Laser diode corner pumped Nd:KGW slab laser[J]. Front Optoelec, 2014, 7(1): 107-109.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-013-0373-3
https://academic.hep.com.cn/foe/EN/Y2014/V7/I1/107
Fig.1  Pumping scheme and Nd:KGW laser resonator
Fig.2  Pump power versus CW mode operation of Nd:KGW slab laser without Q-switch using different output couplers
Fig.3  Input current versus single pulse energy at the output
Fig.4  Operational time versus average power in CW and Q-switched mode
1 Zhu L, Gao C, Wang R, Gao M, Wang X, Eichler H J. Resonantly pumped 1645 nm Q-switched Er:YAG laser with a ring cavity. Frontiers of Optoelectronics , 2012, 5(4): 400–402
doi: 10.1007/s12200-012-0274-x
2 Lin Z, Gao C, Gao M, Zhang Y, Zhu L, Zheng Y. Diode-pumped single-frequency Tm:YAG NPRO laser by using different pumping spot sizes. Frontiers of Optoelectronics , 2009, 2(4): 410–413
doi: 10.1007/s12200-009-0067-z
3 Li J, Yang A, Zuo L, Lai J, Sun Y. Optical sampling system using periodically-poled lithium niobate waveguide and nonlinear polarization rotation mode-locked fiber laser. Frontiers of Optoelectronics , 2012, 5(2): 208–213
doi: 10.1007/s12200-012-0230-9
4 Zhao M, Guo Y, Wang T, Shen X. Short cavity single-frequency all-fiber Er/Yb co-doped laser. Frontiers of Optoelectronics , 2009, 2(1): 81–85
doi: 10.1007/s12200-009-0003-2
5 Liu Y, Zhang H, Yan Y, Zhang H, He J, Xin J. A 123 W Nd:YVO4 slab laser with high beam quality output. Frontiers of Optoelectronics , 2009, 2(4): 407–409
doi: 10.1007/s12200-009-0031-y
6 Zhang Y, Gao C, Gao M, Zheng Y, Wang L, Wang R. A speed measurement system utilizing an injection-seeded Tm:YAG laser. Frontiers of Optoelectronics , 2011, 4(4): 411–414
doi: 10.1007/s12200-011-0148-7
7 Xu J, Dong X, Leng J, Zhou P, Hou J. Efficient, 62.5 watts all-fiber single-mode 1091 nm MOPA laser. Frontiers of Optoelectronics , 2011, 4(4): 426–429
doi: 10.1007/s12200-011-0174-5
8 Zhao Y, Liang Y, Zhu X. Applications of scanning femtosecond laser-induced ionization microscopy in biological imaging. Frontiers of Optoelectronics , 2008, 1(3–4): 201–204
9 Zhang X, Xie S, Zhan Z, Zhao H, Guo J, Ye Q. Evaluation of Er,Cr:YSGG laser for hard tissue ablation: an in vitro study. Frontiers of Optoelectronics , 2010, 3(2): 163–168
doi: 10.1007/s12200-010-0008-x
10 Wang B, Jiang H, Jia X, Zhang Q, Sun D, Yin S. Thermal conductivity of doped YAG and GGG laser crystal. Frontiers of Optoelectronics , 2008, 1(1–2): 138–141
11 Karlitschek P, Hillrichs G. Active and passive Q-switching of a diode pumped Nd:KGW-laser. Applied Physics B , 1996, 64(1): 21–24
doi: 10.1007/s003400050139
12 Liu M, Liu J, Liu S, Li L, Chen F, Wang W. Experimental study on passively Q-switched mode-locking diode-pumped Nd:KGW laser with Cr4+:YAG. Laser Physics , 2009, 19(5): 923–926
doi: 10.1134/S1054660X09050041
13 Musset O, Boquillon J P. Comparative laser study of Nd:KGW and Nd:YAG near 1.3 μm. Applied Physics B , 1997, 64(4): 503–506
doi: 10.1007/s003400050206
14 Kushawaha V, Yan Y, Chen Y. Efficiency of diode-pumped 1.35 μm laser from Nd:KGW. Applied Physics B , 1996, 62(5): 533–535
doi: 10.1007/BF01081056
15 Kushawaha V, Michael A, Major L. Effect of Nd concentration on the Nd:KGW laser. Applied Physics B , 1994, 58(6): 533–535
doi: 10.1007/BF01081086
16 Demidovich A A, Shkadarevich A P, Danailov M B, Apai P, Gasmi T, Gribkovskii V P, Kuzmin A N, Ryabtsev G I, Batay L E. Comparison of cw laser performance of Nd:KGW, Nd:YAG, Nd:BEL and Nd:YVO4 under laser diode pumping. Applied Physics B , 1998, 67(1): 11–15
doi: 10.1007/s003400050467
17 Bai Y, Chen X M, Guo J X, Zhang H L, Bai J T, Ren Z Y. Kilohertz high power extracavity KGW yellow raman lasers based on pulse LD side-pumped ceramic Nd:YAG. Laser Physics , 2012, 22(3): 535–539
doi: 10.1134/S1054660X12030024
18 Lisinetskii V A, Grabtchikov A S, Demidovich A A, Burakevich V N, Orlovich V A, Titov A N. Nd:KGW/KGW crystal: efficient medium for continuous-wave intracavity raman generation. Applied Physics B , 2007, 88(4): 499–501
doi: 10.1007/s00340-007-2757-9
19 Lu B D, Cai B W, Feng G Y, Xu S F. Beam quality improvement of slab lasers. In: Proceedings of International Symposium on Optoelectronics in Computers, Communications, and Control. International Society for Optics and Photonics , 1992, 265–273
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed