Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec    2014, Vol. 7 Issue (1) : 74-76    https://doi.org/10.1007/s12200-013-0374-2
RESEARCH ARTICLE
Multiband infrared luminescence of Er3+-Ho3+-Nd3+/Tm3+-codoped telluride glasses
Yaojing ZHANG1, Lu SUN1, Ying CHANG2, Wenbin LI3, Chun JIANG1()
1. State Key Laboratory of Advanced Optical Communication Systems & Networks, Shanghai Jiao Tong University, Shanghai 200240, China; 2. Digestive Endoscopic Center, Shanghai Sixth Hospital, Shanghai Jiao Tong University, Shanghai 200233, China; 3. Medical Imaging Institute, Institute of Diagnostic and Interventional Radiology, Shanghai Sixth Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
 Download: PDF(155 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper reports the simultaneous emissions around 1.53, 1.80, 2.10, 2.70 and 3.00 μm in Er3+-Ho3+ -Nd3+/Tm3+-codoped telluride glasses upon excitation of a conventional 808 nm laser diode. Both emission bands of 1.53 and 2.70 μm were assigned to the transitions of 4I13/2 -4I15/2, 4I11/2 -4I13/2 of Er3+ ions, respectively, the emission near 1.80 mm was assigned to the transition 4F4 -4H6 of Tm3+ ions, and the emissions at 2.10 and 3.00 mm arose from the transitions of 5I7 -5I8, 5I6 -5I7 of Ho3+ ions. The materials are promising for ultra-broad band amplified spontaneous emission optical sources at near and middle infrared region.

Keywords multiband luminescence      Er3+-Ho3+-Nd3+/ Tm3+      telluride glass     
Corresponding Author(s): JIANG Chun,Email:cjiang@sjtu.edu.cn   
Issue Date: 05 March 2014
 Cite this article:   
Yaojing ZHANG,Lu SUN,Ying CHANG, et al. Multiband infrared luminescence of Er3+-Ho3+-Nd3+/Tm3+-codoped telluride glasses[J]. Front Optoelec, 2014, 7(1): 74-76.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-013-0374-2
https://academic.hep.com.cn/foe/EN/Y2014/V7/I1/74
Fig.1  Multiband emissions around 1.53, 2.10, 2.70 and 3.00 μm in Er-Ho-Nd-codoped (EHN) telluride glasses upon excitation of a conventional 808 nm laser diode
Fig.2  Multiband emissions around 1.53,1.80, 3.00 μm in Er-Ho-Tm-codoped (EHT) telluride glasses upon excitation of a conventional 808 nm laser diode
Fig.3  Processes of electronic transitions and energy transfers in 70TeO-20ZnO-9.0CaO-0.6ErO-0.1HoO-0.3NdO systems (EHN) upon excitation of a conventional 808 nm laser diode
Fig.4  Processes of electronic transitions and energy transfers in 70TeO-20ZnO-9.0CaO-0.6 ErO-0.1HoO-0.3TmO systems (EHT) upon excitation of a conventional 808 nm laser diode
1 Tian Y, Xu R R, Zhang L Y, Hu L L, Zhang J J. Observation of 2.7 μm emission from diode-pumped Er3+/Pr3+-codoped fluorophosphate glass. Optics Letters , 2011, 36(2): 109–111
doi: 10.1364/OL.36.000109 pmid:21263469
2 Xu R R, Tian Y, Hu L L, Zhang J J. Enhanced emission of 2.7 μm pumped by laser diode from Er3+/Pr3+-codoped germanate glasses. Optics Letters , 2011, 36(7): 1173–1175
doi: 10.1364/OL.36.001173 pmid:21479020
3 Tian Y, Xu R R, Hu L L, Zhang J J. Intense 2.7 μm and broadband 2.0 μm emission from diode-pumped Er3+/Tm3+/Ho3+-doped fluorophosphate glass. Optics Letters , 2011, 36(16): 3218–3220
doi: 10.1364/OL.36.003218 pmid:21847213
4 Fan J, Yuan X, Li R, Dong H, Wang J, Zhang L. Intense photoluminescence at 2.7 μm in transparent Er 3+: CaF2-fluorophosphate glass microcomposite. Optics Letters , 2011, 36(22): 4347–4349
doi: 10.1364/OL.36.004347 pmid:22089559
5 Sandrock T, Diening A, Huber G. Laser emission of erbium-doped fluoride bulk glasses in the spectral range from 2.7 to 2.8 μm. Optics Letters , 1999, 24(6): 382–384
doi: 10.1364/OL.24.000382 pmid:18071513
6 Zhong H Y, Chen B J, Ren G Z, Cheng L H, Yao L, Sun J S. 2.7 μm emission of Nd3+, Er3+codoped tellurite glass. Journal of Applied Physics , 2009, 106(8): 083114-1–083114-3
doi: 10.1063/1.3251345
7 Guo Y Y, Li M, Tian Y, Xu R R, Hu L L, Zhang J J. Enhanced 2.7 μm emission and energy transfer mechanism of Nd3+/Er3+ co-doped sodium tellurite glasses. Journal of Applied Physics , 2011, 110(1): 013512-1–013512-5
doi: 10.1063/1.3601353
8 Tsang Y, Richards B, Binks D, Lousteau J, Jha A. A Yb3+/Tm3+/Ho3+ triply-doped tellurite fibre laser. Optics Express , 2008, 16(14): 10690–10695
doi: 10.1364/OE.16.010690 pmid:18607484
9 Zhou B, Tao L, Tsang Y H, Jin W, Pun E Y B. Superbroadband near-IR photoluminescence from Pr3+-doped fluorotellurite glasses. Optics Express , 2012, 20(4): 3803–3813
doi: 10.1364/OE.20.003803 pmid:22418137
10 Zhou B, Tao L, Tsang Y H, Jin W, Pun E Y B. Superbroadband near-infrared emission and energy transfer in Pr3+-Er3+ codoped fluorotellurite glasses. Optics Express , 2012, 20(11): 12205–12211
doi: 10.1364/OE.20.012205 pmid:22714209
11 Zhou B, Tao L, Jin W, Tsang Y H, Pun E Y B. Superbroadband NIR photoluminescence in Nd3+/Tm3+/Er3+ codoped fluorotellurite glasses. IEEE Photonics Technology Letters , 2012, 24(11): 924–926
doi: 10.1109/LPT.2012.2190891
12 Xu Y, Chen D, Wang W, Zhang Q, Zeng H, Shen C, Chen G. Broadband near-infrared emission in Er3+-Tm3+ codoped chalcohalide glasses. Optics Letters , 2008, 33(20): 2293–2295
doi: 10.1364/OL.33.002293 pmid:18923600
13 Lin H, Chen D, Yu Y, Yang A, Wang Y. Enhanced mid-infrared emissions of Er3+ at 2.7 μm via Nd3+ sensitization in chalcohalide glass. Optics Letters , 2011, 36(10): 1815–1817
doi: 10.1364/OL.36.001815 pmid:21593900
14 Zhou B, Lin H, Chen B, Pun E Y B. Superbroadband near-infrared emission in Tm-Bi codoped sodium-germanium-gallate glasses. Optics Express , 2011, 19(7): 6514–6523
doi: 10.1364/OE.19.006514 pmid:21451680
15 Zhang Q, Ding J, Shen Y, Zhang G, Lin G, Qiu J, Chen D. Infrared emission properties and energy transfer between Tm3+ and Ho3+ in lanthanum aluminum germanate glasses. Journal of the Optical Society of America. B , 2010, 27(5): 975–980
doi: 10.1364/JOSAB.27.000975
16 Liu X, Qiao Y, Dong G, Ye S, Zhu B, Lakshminarayana G, Chen D, Qiu J. Cooperative downconversion in Yb3+/-RE3+ (RE=Tm or Pr) codoped lanthanum borogermanate glasses. Optics Letters , 2008, 33(23): 2858–2860
doi: 10.1364/OL.33.002858 pmid:19037451
17 Zhang W J, Zhang Q Y, Chen Q J, Qian Q, Yang Z M, Qiu J R, Huang P, Wang Y S. Enhanced 2.0 μm emission and gain coefficient of transparent glass ceramic containing BaF2: Ho3+, Tm3+ nanocrystals. Optics Express , 2009, 17(23): 20952–20958
doi: 10.1364/OE.17.020952 pmid:19997333
18 Chen D, Wang Y, Yu Y, Liu F, Huang P. Sensitized thulium ultraviolet upconversion luminescence in Tm3+/Yb3+/Nd3+ triply doped nanoglass ceramics. Optics Letters , 2007, 32(21): 3068–3070
doi: 10.1364/OL.32.003068 pmid:17975599
19 Zhu X, Jain R. Numerical analysis and experimental results of high-power Er/Pr:ZBLAN 2.7 μm fiber lasers with different pumping designs. Applied Optics , 2006, 45(27): 7118–7125
doi: 10.1364/AO.45.007118 pmid:16946791
20 Neely T W, Johnson T A, Diddams S A. High-power broadband laser source tunable from 3.0 μm to 4.4 μm based on a femtosecond Yb:fiber oscillator. Optics Letters , 2011, 36(20): 4020–4022
doi: 10.1364/OL.36.004020 pmid:22002372
21 Pollnau M, Ghisler C, Lüthy W, Weber H P, Schneider J, Unrau U B. Three-transition cascade erbium laser at 1.7, 2.7, and 1.6 μm. Optics Letters , 1997, 22(9): 612–614
doi: 10.1364/OL.22.000612 pmid:18185607
22 Park Y H, Lee D W, Kong H J, Kim Y S. Dynamics of a flashlamp pumped 2.70 μm emission Cr:Er:YSGG laser with an infrared-quartz FTIR shutter. Journal of the Optical Society of America. B , 2008, 25(12): 2123–2129
doi: 10.1364/JOSAB.25.002123
23 Zhu Z, Li J, You Z, Wang Y, Lv S, Ma E, Xu J, Wang H, Tu C. Benefit of Pr3+ ions to the spectral properties of Pr3+/Er3+:CaGdAlO4 crystal for a 2.7 μm laser. Optics Letters , 2012, 37(23): 4838–4840
doi: 10.1364/OL.37.004838 pmid:23202063
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed