Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    0, Vol. Issue () : 501-508    https://doi.org/10.1007/s12200-014-0379-5
RESEARCH ARTICLE
Tunneling current in Si-doped n type-GaAs heterostructures infrared emitter
Pradip DALAPATI,Nabin Baran MANIK(),Asok Nath BASU
Condensed Matter Physics Research Center, Department of Physics, Jadavpur University, Kolkata 700032, India
 Download: PDF(609 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In the present work, we measured the forward bias current-voltage (I-V) characteristics of Si-doped n type gallium arsenide (GaAs) heterostructures infrared emitter over a wide temperature range from 350 to 77 K. Results showed that the slopes of the exponential curve changed slowly with temperature. The analysis of the various tunneling mechanisms indicated that the tunneling current varied approximately as a function of ~ exp(- aEg + beV) where the parameters a and b varied indistinctively with temperature and voltage. The dependence of forward tunneling current on the temperature and bias can be explained by thermally induced band gap shrinkage and bias induced route change respectively. These results will be helpful for application of the optoelectronics device in both high and low temperature ambiences.

Keywords infrared emitter      tunneling      characteristic energy      band gap      thermal stress     
Corresponding Author(s): Nabin Baran MANIK   
Online First Date: 11 April 2014    Issue Date: 12 December 2014
 Cite this article:   
Pradip DALAPATI,Nabin Baran MANIK,Asok Nath BASU. Tunneling current in Si-doped n type-GaAs heterostructures infrared emitter[J]. Front. Optoelectron., 0, (): 501-508.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-014-0379-5
https://academic.hep.com.cn/foe/EN/Y0/V/I/501
Fig.1  I-V characteristics of GaAs based infrared emitter in the temperature range of 350–77 K
temperature/K n1 n2 E1/meV E2/meV E1/E2 lmax/nm Eg/eV
77 3.27 2.422 21.716 16.07 1.35 844 1.469
110 2.88 2.207 27.32 20.94 1.30 851 1.457
148 2.58 2.023 32.93 25.787 1.28 857 1.447
181 2.35 1.834 36.68 28.63 1.28 869 1.427
205 2.19 1.787 38.72 31.59 1.22 881 1.407
228 2.07 1.728 40.71 33.38 1.22 894 1.387
250 1.949 1.673 42.02 36.07 1.17 903 1.373
270 1.832 1.651 42.66 38.45 1.11 927 1.337
291 1.755 1.627 44.05 40.83 1.10 948 1.308
311 1.69 1.6 45.33 42.92 1.05 974 1.273
330 1.608 1.564 45.77 44.51 1.03 986 1.258
350 1.562 1.528 47.15 46.13 1.02 994 1.247
Tab.1  Experimental values of n1, n2, E1, E2 (for both low-bias and medium-bias, refer Eq. (1)), E1/E2, peak wavelength lmax and the band gap energy Eg at different temperatures
Fig.2  Variations of characteristic energies (E) and ideality factors (n) as function of temperature
Fig.3  Temperature dependencies of pre-exponential factors IS1 of low-voltage current component (close square) and IS2 of medium-voltage current component (close triangle) with temperature
Fig.4  1/C2 as function of reverse bias voltage (V) for GaAs infrared emitter at room temperature
Fig.5  Proposed model for tunneling recombination in Si-doped n type-GaAs infrared emitter. The quantities EC, EV and EF denote the conduction band, the valence band and Fermi energy, respectively
Fig.6  Variation of peak wavelength (lmax) and band gap (Eg) in the temperature range from 350 to 77 K. The continuous line represents the theory, while dots the experimental points
Fig.7  Variation of temperature dependence band gap energy with temperature
Fig.8  Band gap dependence of forward tunneling current at different voltages of medium-bias region
1 The application of infrared LED. 2008, http://www.ledinside.com/knowledge/2008/8/the_application_of_infrared_LED
2 Camin D V, Valerio G. Cryogenic behavior of optoelectronic devices for the transmission of analog signals via fiber optics. IEEE Transactions on Nuclear Science, 2006, 53(6): 3929–3933
https://doi.org/10.1109/TNS.2006.886050
3 Manik N B, Basu A N, Mukherjee S C. Characterisation of the photodetector and light emitting diode at above liquid nitrogen temperature. Cryogenics, 2000, 40(4): 341–344
https://doi.org/10.1016/S0011-2275(00)00036-9
4 Losacco G, Dominique G. Components update: qualification of a IR LED device for optical encoders for space applications. ISROS, 1–5 October 2012– Poster Session
5 Hudait M K, Modak P, Krupanidhi S B. Si incorporation and Burstein–Moss shift in n-type GaAs. Materials Science and Engineering B, 1999, 60(1): 1–11
https://doi.org/10.1016/S0921-5107(99)00016-1
6 Wilson J, Hawker J F B. Optoelectronics-An Introduction. 2nd ed. India: Prentice-Hall of India Private Limited, 1999, 132–133
7 Hudait M K, Modak P, Rao K S R K, Krupanidh S B. Low temperature photoluminescence properties of Zn-doped GaAs. Materials Science and Engineering B, 1998, 57(1): 62–70
https://doi.org/10.1016/S0921-5107(98)00259-1
8 Yan D W, Lu H, Chen D J, Zhang R, Zheng Y D. Forward tunneling current in GaN-based blue light-emitting diodes. Applied Physics Letters, 2010, 96(8): 083504-1–083504-3
9 Casey H C, Muth J, Krishnankutty S, Zavada J M. Dominance of tunneling current and band filling in InGaN/AlGaN double heterostructure blue light-emitting diodes. Applied Physics Letters, 1996, 68(20): 2867–2869
https://doi.org/10.1063/1.116351
10 Eliseev P G, Perlin P, Furioli J, Sartori P, Mu J, Osinski M. Tummeling current and electroluminescence in InGaN:Zn, Si/AlGaN/GaN blue light emitting diodes. Journal of Electronic Materials, 1997, 26(3): 311–319
https://doi.org/10.1007/s11664-997-0170-0
11 Zemel A, Eger D.Tunneling current in PbTe-Pb0.8Sn0.2Te heterojunctions. Solid-Slate Electronics, 1980, 23(11): 1123–1126
12 Sarusi G, Zemel A, Sher A, Eger D. Forward tunneling current in HgCdTe photodiodes. Journal of Applied Physics, 1994, 76(7): 4420–4425
https://doi.org/10.1063/1.357336
13 Dalapati P, Manik N B, Basu A N. Effect of temperature on intensity and carrier lifetime of an AlGaAs based red light emitting diode. Journal of Semiconductors, 2013, 34(9): 092001-1–092001-5
14 Reynolds C L, Patel A. Tunneling entity in different injection regimes of InGaN light emitting diodes. Journal of Applied Physics, 2008, 103(8): 086102-1–086102-2
https://doi.org/10.1063/1.2906326
15 Morgan T N. Recombination by tunneling in electroluminescent diodes. Physical Review, 1966, 148(2): 890–903
https://doi.org/10.1103/PhysRev.148.890
16 Wolfe C M, Stillman G E, Dimmock J O. Ionized impurity density in n-type GaAs. Journal of Applied Physics, 1970, 41(2): 504–507
https://doi.org/10.1063/1.1658704
17 Guo W L, Jia X J, Yin F, Cui B F, Gao W, Liu Y, Yan W W. Characteristics of high power LEDs at high and low temperature. Journal of Semiconductors, 2011, 32(4): 044007-1–044007-3
18 Schubert E F. Light Emitting Diodes. San Diego: Cambridge University Press, 2003, 80
19 Ozgur G. The effective mass theory. 2003, http://lyle.smu.edu/ee/smuphotonics/Gain/CoursePresentationFall03/Effective_Mass_Theory_July25-03.pdf
20 Kittel C. Introduction to Solid State Physics. 7th ed. Singapore: John Wiley & Sons (Asia) Pre. Ltd., 2004, 214
[1] Guangdong Li, Mingxiang Xu, Zhong Chen. Design and simulation investigations on charge transport layers-free in lead-free three absorber layer all-perovskite solar cells[J]. Front. Optoelectron., 2024, 17(2): 18-.
[2] Wanjun GONG, Wenhui PAN, Ying HE, Meina HUANG, Jianguo ZHANG, Zhenyu GU, Dan ZHANG, Zhigang YANG, Junle QU. Super-resolution imaging of the dynamic cleavage of intercellular tunneling nanotubes[J]. Front. Optoelectron., 2020, 13(4): 318-326.
[3] Haiwei DU,Nan YANG. Optical ionization evolution effect on photocurrent produced from two-color femtosecond laser pulses[J]. Front. Optoelectron., 2015, 8(1): 93-97.
[4] Mohammad KARIMI, Kambiz ABEDI, Mahdi ZAVVARI. InAs/GaAs far infrared quantum ring inter-subband photodetector[J]. Front Optoelec, 2014, 7(1): 84-90.
[5] Somaye SERAJMOHAMMADI, Hamed ALIPOUR-BANAEI. Band gap properties of 2D square lattice photonic crystal composed of rectangular cells[J]. Front Optoelec, 2013, 6(3): 346-352.
[6] Diqiu HUANG, Xiangbin ZENG, Yajuan ZHENG, Xiaojin WANG, Yanyan YANG. Influence of process parameters on band gap of Al-doped ZnO film[J]. Front Optoelec, 2013, 6(1): 114-121.
[7] E. KASPER, M. OEHME, J. WERNER, T. AGUIROV, M. KITTLER. Direct band gap luminescence from Ge on Si pin diodes[J]. Front Optoelec, 2012, 5(3): 256-260.
[8] Shuxin LI, Yunjun RUI, Yunqing CAO, Jun XU, Kunji CHEN. Annealing effect on optical and electronic properties of silicon rich amorphous silicon-carbide films[J]. Front Optoelec, 2012, 5(1): 107-111.
[9] LIU Jing, SUN Junqiang, HUANG Dexiu, HUANG Chongqing, WU Ming. Influence of two-dimensional magnetic photonic quantum wells on resonant tunneling spectral character[J]. Front. Optoelectron., 2008, 1(1-2): 156-161.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed