Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2015, Vol. 8 Issue (3) : 306-313    https://doi.org/10.1007/s12200-014-0401-y
RESEARCH ARTICLE
Profile and roughness of electrorheological finishing optical surfaces
Haobo CHENG1,*(),Jingshi SU1,Yong CHEN1,Hon-Yuen TAM2
1. School of Optoelectronics, Joint Research Center for Optomechatronics Design and Engineering, Beijing Institute of Technology, Beijing 100081, China
2. Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong, China
 Download: PDF(1734 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper focuses on the process of electrorheological (ER) finishing optical surfaces. Experiments on K9 mirrors were conducted. In one experiment, the operating distance was varied over 0.5–0.8 mm with the voltage at 2000 V. The maximum peak-to-valley (PV) reduction was obtained at the distance of 0.5 mm, where the PV value was reduced from 58.71 to 25.03 nm. In another experiment, the voltage was varied over 1500–3000 V with operating distance at 0.5 mm. The final surface roughness (Ra) achieved was as low as 2.5 nm. A higher voltage produced a higher relative reduction of the Ra. These experimental results validated the process.

Keywords finishing      surface roughness      electrorheological (ER)     
Corresponding Author(s): Haobo CHENG   
Online First Date: 25 April 2014    Issue Date: 18 September 2015
 Cite this article:   
Haobo CHENG,Jingshi SU,Yong CHEN, et al. Profile and roughness of electrorheological finishing optical surfaces[J]. Front. Optoelectron., 2015, 8(3): 306-313.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-014-0401-y
https://academic.hep.com.cn/foe/EN/Y2015/V8/I3/306
Fig.1  Simulation of electric field strength along z-axis
material air resistivity material resistivity supplied voltage element type
0Cr18Ni9 10 6 Ω ? m 9.7 × 10 - 8 Ω ? m 1.5, 2.0, 2.5, 3.0 kV PLANE67 & INF110
Tab.1  Finite element analysis parameters
Fig.2  Finite element analysis of electric field around tool head
Fig.3  Changes of surface profile (U = 2000 V)
z/mm before ( a 1 )/nm after ( a 2 )/nm ( a 1 - a 2 )/nm K/%
0.5 58.71 25.03 33.68 57.37
0.6 55.00 29.66 25.34 46.07
0.7 59.33 37.70 21.63 36.46
0.8 58.40 41.09 17.31 29.64
Tab.2  PV vs z
z/mm before ( a 1 )/nm after ( a 2 )/nm ( a 1 - a 2 )/nm K/%
0.5 7.82 3.67 4.15 53.07
0.6 6.24 3.48 2.76 44.23
0.7 8.62 5.30 3.32 38.52
0.8 10.14 4.79 5.35 52.76
Tab.3  RMS vs z
Fig.4  Relationships between relative change of PV and of RMS and operating distance (U = 2000 V)
Fig.5  Changes of the surface roughness (operating distance= 1.5 mm)
U/V before ( a 1 )/nm after ( a 2 )/nm ( a 1 - a 2 )/nm K/%
1500 4.05 2.53 1.52 37.53
2000 8.46 3.92 4.54 53.66
2500 7.34 2.62 4.72 64.31
3000 8.47 2.77 5.70 67.30
Tab.4  Ra vs U
Fig.6  Relationship between relative change of Ra and supply voltage (operating distance= 0.5 mm)
1 Golini D, Kordonski W I, Dumas P, Hogan S J. Magnetorheological finishing (MRF) in commercial precision optics manufacturing. In: Proceedings of the SPIE, Optical Manufacturing and Testing III. 1999, 3782: 80–91
2 Jha S, Jain V K. Design and development of the magnetorheological abrasive flow finishing (MRAFF) process. International Journal of Machine Tools & Manufacture, 2004, 44(10): 1019–1029
https://doi.org/10.1016/j.ijmachtools.2004.03.007
3 Shorey A B, Kordonski W, Tricard M. Magnetorheological finishing of large and lightweight optics. In: Proceedings of SPIE, Advances in Mirror Technology for X-Ray, EUV Lithography, Laser, and Other Applications II. 2004, 5533: 99–107
4 Umehara N, Hayashi T, Kato K. In situ observation of the behavior of abrasives in magnetic fluid grinding. Journal of Magnetism and Magnetic Materials, 1995, 149(1–2): 181–184
https://doi.org/10.1016/0304-8853(95)00366-5
5 Mori T, Hirota K, Kawashima Y. Clarification of magnetic abrasive finishing mechanism. Journal of Materials Processing Technology, 2003, 143–144: 682–686
https://doi.org/10.1016/S0924-0136(03)00410-2
6 Kim J D, Choi M S. Study on magnetic polishing of free-form surfaces. International Journal of Machine Tools & Manufacture, 1997, 37(8): 1179–1187
https://doi.org/10.1016/S0890-6955(95)00078-X
7 Yin S, Shinmura T. A comparative study: polishing characteristics and its mechanisms of three vibration modes in vibration-assisted magnetic abrasive polishing. International Journal of Machine Tools & Manufacture, 2004, 44(4): 383–390
https://doi.org/10.1016/j.ijmachtools.2003.10.002
8 Kuriyagawa T, Syoji K. Development of electrorheological fluid assisted machining for 3-dimensional small parts. Journal-Japan Society for Precision Engineering, 1999, 65(1): 145–149
https://doi.org/10.2493/jjspe.65.145
9 Kuriyagawa T, Saeki M, Syoji K. Study of electrorheological fluid-assisted ultra-precision polishing for 3-dimensional small parts. In: Proceedings of the 2nd International Conference of the European Society for Precision Engineering and Nanotechnology, Turin. 2001, 738–741
10 Kuriyagawa T, Saeki M, Syoji K. Electrorheological fluid-assisted ultra-precision polishing for small three-dimensional parts. Precision Engineering, 2002, 26(4): 370–380
https://doi.org/10.1016/S0141-6359(02)00112-5
11 Kim W B, Lee S J, Kim Y J, Lee E S. The electromechanical principle of electrorheological fluid-assisted polishing. International Journal of Machine Tools & Manufacture, 2003, 43(1): 81–88
https://doi.org/10.1016/S0890-6955(02)00143-8
12 Kim W B, Park S J, Min B K, Lee S J. Surface finishing technique for small parts using dielectrophoretic effects of abrasive particles. Journal of Materials Processing Technology, 2004, 147(3): 377–384
https://doi.org/10.1016/j.jmatprotec.2004.01.010
13 Kim W B, Min B K, Lee S J. Development of a padless ultraprecision polishing method using electrorheological fluid. Journal of Materials Processing Technology, 2004, 155–156: 1293–1299
https://doi.org/10.1016/j.jmatprotec.2004.04.239
14 Zhang L, Kuriyagawa T, Kaku T, Zhao J. Investigation into electrorheological fluid-assisted polishing. International Journal of Machine Tools & Manufacture, 2005, 45(12–13): 1461–1467 
https://doi.org/10.1016/j.ijmachtools.2005.01.021
15 Tanaka T. A study of basic characteristics of polishing using particle-type electro-rheological fluid. Key Engineering Materials, 2007, 329: 201–206
https://doi.org/10.4028/www.scientific.net/KEM.329.201
16 Kaku T, Yoshihara N, Yan J W, Kuriyagawa T, Abiko K, Mikami Y, Noguchi M. Development of a resin-coated micro polishing tool by plasma CVD method -electrorheological fluid-assisted polishing of tungsten carbide micro aspherical molding dies. Key Engineering Materials, 2007, 329: 213–218
https://doi.org/10.4028/www.scientific.net/KEM.329.213
17 Chen B, Cheng H, Tam H Y, Li H. Design of integrated-electrode tool for electrorheological finishing of optical glasses. Frontiers of Optoelectronics in China, 2011, 4(4): 467–471
https://doi.org/10.1007/s12200-011-0183-4
[1] Binbin CHEN, Haobo CHENG, Hon Yuen TAM, Hui LI. Design of integrated-electrode tool for electrorheological finishing of optical glasses[J]. Front Optoelec Chin, 2011, 4(4): 467-471.
[2] Haobo CHENG, Yunpeng FENG, Tan WANG, Zhichao DONG. Magnetorheological finishing of optical surface combined with symmetrical tool function[J]. Front Optoelec Chin, 2010, 3(4): 408-412.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed