Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2014, Vol. 7 Issue (3) : 385-392    https://doi.org/10.1007/s12200-014-0421-7
RESEARCH ARTICLE
Absorption density control in waveguide photodiode---analysis, design, and demonstration
Dingbo CHEN(),Jeffery BLOCH,Rui WANG,Paul K. L. YU
Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
 Download: PDF(1479 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A modal analysis is conducted for analyzing the absorption profile of high power waveguide photodiodes designed for analog optical link. The excitation of guided modes with large filling factor in the absorber is identified as a limiting factor for the performance of waveguide photodiodes at high optical power, including power handling capability, and bandwidth-efficiency product. A waveguide photodiode design, which spatially separates the input waveguide from the absorber in the lateral direction, is analyzed and experimentally demonstrated to suppress the excitation of mode with large filling factor. Photocurrent>60 mA under -4 V bias is measured, with 0.80 A/W responsivity. This design illustrates that high power handling capability can be achieved without compromising the bandwidth-efficiency product.

Keywords photodiode      waveguide      thermal failure      high power      mode excitation     
Corresponding Author(s): Dingbo CHEN   
Issue Date: 09 September 2014
 Cite this article:   
Dingbo CHEN,Jeffery BLOCH,Rui WANG, et al. Absorption density control in waveguide photodiode---analysis, design, and demonstration[J]. Front. Optoelectron., 2014, 7(3): 385-392.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-014-0421-7
https://academic.hep.com.cn/foe/EN/Y2014/V7/I3/385
Fig.1  Schematic of traditional WIP for high power applications
Fig.2  Top view of thermally failed WIP with traditional WIP structure
Fig.3  Cross-sectional view of example of traditional WIP (a); field plot for the 0th and 1st orders modes at the center of waveguide along x direction (b) and y direction (c)
Fig.4  Simulated absorption profile in traditional WIP shown in Fig. 3(a), with WG ridge width, W2 varied. The mode excitation coefficient χ of first three major modes 0th, 1st, and 2nd are listed in an enclosed table, while all other modes with χ<0.01 are neglected.
Fig.5  Comparisons of waveguide structure (a) and absorption profile (b) among WIPs with different spatial separation δ x between input waveguide and absorber at x direction
Fig.6  Schematic of DCPD
Fig.7  Field plot for first 4 major modes in the passive MMI and large Г modes in DCPD active section along x direction
modeexcitation coefficient χfilling factor Г
0th0.340.010
1st0.510.011
2nd0.430.050
3rd0.150.040
4th0.110.080
5th0.030.070
large Г mode0.0020.240
Tab.1  Excitation coefficient χ and filling factor Г of the first 5 major modes and the large Г mode in DCPD
Fig.8  Waveguide structure of DCPD (a); MUTC layer structure of DCPD (b); simulated absorption profile of DCPD (c)
Fig.9  DC optical power handling test of three DCPD devices with different delay lengths, in comparison with WIP device fabricated with the same waveguide dimension and the same layer structure with DCPD. The device responsivity is recorded at incremental photocurrent level until thermal failure happens
Fig.10  Top view picture of thermally failed DCPD
Fig.11  Varying absorption near front end by changing WG thickness d in traditional WIP (a) and by changing delay length in DCPD (b)
1 Chang W S C. F<?Pub Caret1?>undamentals of Guided-Wave Optoelectronic Devices. Cambridge: Cambridge University Press, 2010
2 Williams K J, Esman R D, Dagenais M. Nonlinearities in pin microwave photodetectors. Journal of Lightwave Technology, 1996, 14(1): 84-96
doi: 10.1109/50.476141
3 Lasaosa D, Shi J W, Pasquariello D, Gan K G, Tien M C, Chang H H, Chu S W, Sun C K, Chiu Y J, Bowers J E. Traveling-wave photodetectors with high power-bandwidth and gain-bandwidth product performance. Quantum Electronics, 2004, 10(4): 728-741
4 Demiguel S, Giraudet L. Joulaud L, Decobert J, Blache F, Coupe V, Jorge F, Rossiaux P P, Boucherez E, Achouche M, Devaux F. Evanescently coupled photodiodes integrating a double-stage taper for 40-Gb/s applications-compared performance with side-illuminated photodiodes. Journal of Lightwave Technology, 2002, 20(12): 2004-2014
doi: 10.1109/JLT.2002.806752
5 Michel N, Magnin V, Harari J, Marceaux A, Parillaud O, Decoster D, Vodjdani N. High-power evanescently-coupled waveguide photodiodes. IEE Proceedings-Optoelectronics, 2006, 153(4): 199-204
doi: 10.1049/ip-opt:20050032
6 Jiang H, Yu P K L. High power waveguide integrated photodiode with distributed absorption. In: Proceedings of IEEE MTT-S Digest. 2000, 2: 679-682
7 Liao T S, Mages P, Yu P K L. Investigation of the high power integrated uni-traveling carrier and waveguide integrated photodiode. In: Proceedings of IEEE MTT-S Digest. 2003, 1: 155-158
8 Jiang H, Yu P K L. Waveguide integrated photodiode for analog fiber-optics links. IEEE Transactions on Microwave Theory and Techniques, 2000, 48(12): 2604-2610
doi: 10.1109/22.899019
9 Kato K, Yoshida J. Ultrawide-bandwidth 1.55 μm waveguide p-i-n photodiode. Proceedings of the Society for Photo-Instrumentation Engineers, 1994, 2149: 312-319
doi: 10.1117/12.175271
10 Draa M N, Bloch J, Chen D B, Scott D C, Chen N, Chen S B, Yu X C, Chang W S C, Yu P K L. Novel directional coupled waveguide photodiode-concept and preliminary results. Optics Express, 2010, 18(17): 17729-17735
doi: 10.1364/OE.18.017729 pmid: 20721159
11 Zhang Y X, Liao Z Y, Zhao L J, Zhu H L, Pan J Q, Wang W. A high-efficiency high-power evanescently coupled UTC-photodiode. Journal of Semiconductors, 2009, 30(4): 1-4
12 Klamkin J, Ramaswamy A, Johansson L A, Chou H F, Sysak M N, Raring J W, Parthasarathy N, DenBaars S P, Bowers J E, Coldren L A. High output saturation and high-linearity uni-traveling-carrier waveguide photodiodes. IEEE Photonics Technology Letters, 2007, 19(3): 149-151
doi: 10.1109/LPT.2006.890101
[1] Yue WANG, Jiaxin ZHAO, Qifeng ZHU, Jianping SHEN, Zhongyue WANG, Haitao GUO, Chunxiao LIU. Near-infrared carbon-implanted waveguides in Tb3+-doped aluminum borosilicate glasses[J]. Front. Optoelectron., 2019, 12(4): 392-396.
[2] Yuchen SONG, Yunfeng CHEN, Jianguo XIN, Teng SUN. Two-dimensional beam shaping and homogenization of high power laser diode stack with rectangular waveguide[J]. Front. Optoelectron., 2019, 12(3): 311-316.
[3] Jianfeng GAO, Junqiang SUN, Heng ZHOU, Jialin JIANG, Yang ZHOU. Design and fabrication of compact Ge-on-SOI coupling structure[J]. Front. Optoelectron., 2019, 12(3): 276-285.
[4] Yanli ZHAO, Junjie TU, Jingjing XIANG, Ke WEN, Jing XU, Yang TIAN, Qiang LI, Yuchong TIAN, Runqi WANG, Wenyang LI, Mingwei GUO, Zhifeng LIU, Qi TANG. Temperature dependence simulation and characterization for InP/InGaAs avalanche photodiodes[J]. Front. Optoelectron., 2018, 11(4): 400-406.
[5] Xiaoliang SHEN, Yue WANG, Haitao GUO, Chunxiao LIU. Near-infrared carbon-implanted Er3+/Yb3+ co-doped phosphate glass waveguides[J]. Front. Optoelectron., 2018, 11(3): 291-295.
[6] Peng WANG, Aron MICHAEL, Chee Yee KWOK. Silicon waveguide cantilever displacement sensor for potential application for on-chip high speed AFM[J]. Front. Optoelectron., 2018, 11(1): 53-59.
[7] Chuan WANG,Xiaoying LIU,Minming ZHANG,Peng ZHOU. Low dispersion broadband integrated double-slot microring resonators optical buffer[J]. Front. Optoelectron., 2016, 9(4): 571-577.
[8] Changming CHEN,Daming ZHANG. Cross-cascaded AWG-based wavelength selective switching integrated module using polymer optical waveguide circuits[J]. Front. Optoelectron., 2016, 9(3): 428-435.
[9] Qirong XIAO,Yusheng HUANG,Junyi SUN,Xuejiao WANG,Dan LI,Mali GONG,Ping YAN. Research on multi-kilowatts level tapered fiber bundle N×1 pumping combiner for high power fiber laser[J]. Front. Optoelectron., 2016, 9(2): 301-305.
[10] Yunsong ZHAO,Yeyu ZHU,Lin ZHU. Integrated coherent combining of angled-grating broad-area lasers[J]. Front. Optoelectron., 2016, 9(2): 290-300.
[11] Swapnajit CHAKRAVARTY,Xiangning CHEN,Naimei TANG,Wei-Cheng LAI,Yi ZOU,Hai YAN,Ray T. CHEN. Review of design principles of 2D photonic crystal microcavity biosensors in silicon and their applications[J]. Front. Optoelectron., 2016, 9(2): 206-224.
[12] Ya’nan WANG,Yi LUO,Changzheng SUN,Bing XIONG,Jian WANG,Zhibiao HAO,Yanjun HAN,Lai WANG,Hongtao LI. Laser annealing of SiO2 film deposited by ICPECVD for fabrication of silicon based low loss waveguide[J]. Front. Optoelectron., 2016, 9(2): 323-329.
[13] Yidong HUANG,Kaiyu CUI,Fang LIU,Xue FENG,Wei ZHANG. Novel optoelectronic characteristics from manipulating general energy-bands by nanostructures[J]. Front. Optoelectron., 2016, 9(2): 151-159.
[14] Jing DAI,Minming ZHANG,Feiya ZHOU,Deming LIU. Highly efficient tunable optical filter based on liquid crystal micro-ring resonator with large free spectral range[J]. Front. Optoelectron., 2016, 9(1): 112-120.
[15] Chuan WANG,Xiaoying LIU,Peng ZHOU,Peng LI,Jia DU. Dispersion of double-slot microring resonators in optical buffer[J]. Front. Optoelectron., 2016, 9(1): 106-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed