Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2015, Vol. 8 Issue (4) : 424-430    https://doi.org/10.1007/s12200-014-0426-2
RESEARCH ARTICLE
Influence of optical filtering on transmission capacity in single mode fiber communications
M. Venkata SUDHAKAR1,*(),Y. Mallikarjuna REDDY2,B. Prabhakara RAO1
1. Department of Electronics and Communication Engineering, Jawaharlal Nehru Technological (JNT) University, Kakinada, AP, India
2. Department of Electronics and Communication Engineering, Vasireddy Venkatadri Institute of Technology, Guntur, AP, India
 Download: PDF(714 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper presents the design and analysis of optical filters that are placed at the output of directly modulated vertical cavity surface emitting laser (VCSEL) in the process of inexpensive transmitter’s implementation for upcoming generation optical access network. Generation of non return to zero (NRZ) optical signal from the transmitter for 110 km error-free single mode fiber (SMF) transmission at 10 Gb/s with bit error rate (BER) of 10−30 in the absence of the external modulator and encoder was proposed. Effects of super-Gaussian and Butterworth optical filters at VCSEL output were demonstrated to maximize performance of SMF optical systems without need of any dispersion compensation technique.

Keywords single mode fiber (SMF)      optical filter      dispersion      data rate     
Corresponding Author(s): M. Venkata SUDHAKAR   
Online First Date: 11 June 2014    Issue Date: 24 November 2015
 Cite this article:   
M. Venkata SUDHAKAR,Y. Mallikarjuna REDDY,B. Prabhakara RAO. Influence of optical filtering on transmission capacity in single mode fiber communications[J]. Front. Optoelectron., 2015, 8(4): 424-430.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-014-0426-2
https://academic.hep.com.cn/foe/EN/Y2015/V8/I4/424
Fig.1  

Optical filtering at the transmitter. VCSEL: vertical cavity surface emitting laser; OBPF: optical band pass filter; SMF: single mode fiber; LPF: low-pass filter; BER: bit error rate

Fig.2  

Waveforms of optical filtering scheme. (a) VCSEL output and (b) super-Gaussian OBPF output for 10100110 bit sequence

Fig.3  

BER performance comparison. (a) Measured at back-to-back (B-t-B) and (b) measured with LiNbO3 at 80 km and proposed scheme at 110 km

Fig.4  

BER values for different lengths of SMF

Fig.5  

Dispersion tolerance of LiNbO3 and proposed scheme

Fig.6  

BER and Bit rate relationship

Fig.7  

Eye-patterns after 110 km of SMF

Tab.1  

Comparison of current work with preceding methods

1 Schires  K, Hurtado  A, Henning  I D, Adams  M J. Polarization and time-resolved dynamics of a 1550-nm VCSEL subject to orthogonally polarized optical injection. IEEE Photonics Journal, 2011, 3(3): 555–563
https://doi.org/10.1109/JPHOT.2011.2158636
2 Lin  C C, Chi  Y C, Kuo  H C, Peng  P C, Chang-Hasnain  C J, Lin  G R. Beyond-bandwidth electrical pulse modulation of a TO-Can packaged VCSEL for 10 Gbit/s injection-locked NRZ-to-RZ transmission. Journal of Lightwave Technology, 2011, 29(6): 830–841
https://doi.org/10.1109/JLT.2010.2103551
3 Papakonstantinou  I, Papadopoulos  S, Soos  C, Troska  J, Vasey  F, Vichoudis  P. Modal dispersion mitigation in standard single-mode fibers at 850 nm with fiber mode filters. IEEE Photonics Technology Letters, 2010, 22(20): 1476–1478
https://doi.org/10.1109/LPT.2010.2063698
4 Koizumi  K, Yoshida  M, Nakazawa  M. A 10-GHz optoelectronic oscillator at 1.1 µm using a single-mode VCSEL and a photonic crystal fiber. IEEE Photonics Technology Letters, 2010, 22(5): 293–295
https://doi.org/10.1109/LPT.2009.2038892
5 Gatto  A, Boletti  A, Boffi  P, Neumeyr  C, Ortsiefer  M, Rönneberg  E, Martinelli  M. 1.3-µm VCSEL transmission performance up to 12.5 Gbs for metro access networks. IEEE Photonics Technology Letters, 2009, 21(12): 778–780
https://doi.org/10.1109/LPT.2009.2016434
6 Rao  Y, Yang  W, Chase  C, Huang  M C Y, Worland  D P, Khaleghi  S, Chitgarha  M R, Ziyadi  M, Willner  A E, Chang-Hasnain  C J. Long-wavelength VCSEL using high-contrast grating. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(4): 1701311
7 Killey  R I, Watts  P M, Mikhailov  V, Glick  M, Bayvel  P. Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach–Zehnder modulator. IEEE Photonics Technology Letters, 2005, 17(3): 714–716
https://doi.org/10.1109/LPT.2004.840999
8 Kobayashi  W, Arai  M, Yamanaka  T, Fujiwara  N, Fujisawa  T, Ishikawa  M, Tsuzuki  K, Shibata  Y, Kondo  Y, Kano  F. Wide temperature range (25°C–100°C) operation of a 10-Gb/s 1.55-µm electroabsorption modulator integrated DFB laser for 80-km SMF transmission. IEEE Photonics Technology Letters, 2009, 21(15): 1054–1056
https://doi.org/10.1109/LPT.2009.2022182
9 Yi  H, Long  Q, Tan  W, Li  L, Wang  X, Zhou  Z. Demonstration of low power penalty of silicon Mach-Zehnder modulator in long-haul transmission. Optics Express, 2012, 20(25): 27562–27568
https://doi.org/10.1364/OE.20.027562 pmid: 23262706
10 Kipnoo  E R, Kourouma  H, Waswa  D, Leitch  A W R, Gibbon  T B. Analysis of VCSEL transmission for the square kilometre array (SKA) in South Africa. In: Proceedings of the Southern Africa Telecommunication Networks and Applications Conference (SATNAC), George, South Africa. 2012, 483–484
11 Cheng  X, Wen  Y J, Xu  Z, Shao  X, Wang  Y, Yeo  Y. 10-Gb/s WDM-PON transmission using uncooled, directly modulated free-running 1.55-μm VCSELs. In: proceedings of European Conference on Optical Communication, Brussels, Belgium. 2008, Paper P.6.02
12 Hofmann  W, Grüner-Nielsen  L, Rönneberg  E, Böhm  G, Ortsiefer  M, Amann  M C. 1.55-µm VCSEL modulation performance with dispersion-compensating fibers. IEEE Photonics Technology Letters, 2009, 21(15): 1072–1074
https://doi.org/10.1109/LPT.2009.2022647
13 Nishiyama  N, Caneau  C, Downie  J D, Sauer  M, Zah  C E. 10-Gbps 1.3 and 1.55-μm InP-based VCSELs: 85°C 10-km error-free transmission and room temperature 40-km transmission at 1.55-μm with EDC. In: Proceedings of Optical Fiber Communication Conference. 2006, PDP23
14 Rotich Kipnoo  E K, Kourouma  H Y S, Gamatham  R R G, Leitch  A W R, Gibbon  T B. Chromatic dispersion compensation for VCSEL transmission for applications such as square kilometre array South Africa. In: Proceedings of the 58th annual SAIP conference, Pretoria, South Africa. 2013, paper 171
15 Boffi  B, Boletti  A, Gatto  A, Martinelli  M. VCSEL to VCSEL injection locking for uncompensated 40-km transmission at 10 Gb/s. In: Proceedings of National Fiber Optic Engineers Conference, San Diego, USA. 2009, JThA32
16 Fidler  F, Cerimovic  S, Dorrer  C. High-speed optical characterization of intensity and phase dynamics of a 1.55 µm VCSEL for short-reach applications. In: Proceedings of Optical Fiber Communication Conference. 2006, OW175
17 Jensen  J B, Rodes  R, Caballero  A, Cheng  N, Zibar  D, Monroy  I T. VCSEL based coherent PONs. Journal of Lightwave Technology, 2014, 32(8): 1423–1433
18 Lin  C C, Kuo  H C, Peng  P C, Lin  G R. Chirp and error rate analyses of an optical-injection gain-switching VCSEL based all-optical NRZ-to-PRZ converter. Optics Express, 2008, 16(7): 4838–4847
19 Mena  P V, Morikuni  J J, Kang  S M, Harton  A V, Wyatt  K W. A simple rate-equation-based thermal VCSEL model. Journal of Lightwave Technology, 1999, 17(5): 865–872
https://doi.org/10.1109/50.762905
20 Cartledge  J C, Burley  G S. The effect of laser chirping on lightwave system performance. Journal of Lightwave Technology, 1989, 7(3): 568–573
https://doi.org/10.1109/50.16895
21 Pfennigbauer  M, Winzer  P J. Choice of MUX/DEMUX filter characteristics for NRZ, RZ, and CSRZ DWDM systems. Journal of Lightwave Technology, 2006, 24(4): 1689–1696
https://doi.org/10.1109/JLT.2006.870972
22 Slobodnik  A J, Fenstermacher  T E, Kearns  W J, Roberts  G A, Silva  J H, Noonan  J P. SAW Butterworth contiguous filters at UHF. IEEE Transactions on Sonics and Ultrasonics, 1979, SU-26(3): 246–253
23 Slobodnik  A J, Kearns  W J, Noonan  J P. Design, fabrication and testing of SAW Butterworth filters. In: IEEE MITTs International Microwave Symposium. 1975, 353–355
24 Dai  B, Gao  Z, Wang  X, Chen  H, Kataoka  N, Wada  N. Generation of versatile waveforms from CW light using a dual-drive Mach-Zehnder modulator and employing chromatic dispersion. Journal of Lightwave Technology, 2013, 31(1): 145–151
https://doi.org/10.1109/JLT.2012.2225827
[1] Md. Mostafa FARUK, Nazifa Tabassum KHAN, Shovasis Kumar BISWAS. Highly nonlinear bored core hexagonal photonic crystal fiber (BC-HPCF) with ultra-high negative dispersion for fiber optic transmission system[J]. Front. Optoelectron., 2020, 13(4): 433-440.
[2] Rekha SAHA, Md. Mahbub HOSSAIN, Md. Ekhlasur RAHAMAN, Himadri Shekhar MONDAL. Design and analysis of high birefringence and nonlinearity with small confinement loss photonic crystal fiber[J]. Front. Optoelectron., 2019, 12(2): 165-173.
[3] John C. CARTLEDGE. Performance of coherent optical fiber transmission systems[J]. Front. Optoelectron., 2018, 11(2): 128-133.
[4] Vasily A. MATKIVSKY, Alexander A. MOISEEV, Sergey Yu. KSENOFONTOV, Irina V. KASATKINA, Grigory V. GELIKONOV, Dmitry V. SHABANOV, Pavel A. SHILYAGIN, Valentine M. GELIKONOV. Medium chromatic dispersion calculation and correction in spectral-domain optical coherence tomography[J]. Front. Optoelectron., 2017, 10(3): 323-328.
[5] Chuan WANG,Xiaoying LIU,Minming ZHANG,Peng ZHOU. Low dispersion broadband integrated double-slot microring resonators optical buffer[J]. Front. Optoelectron., 2016, 9(4): 571-577.
[6] Xinliang ZHANG,Zhao WU. Linear optical signal processing with optical filters: a tutorial[J]. Front. Optoelectron., 2016, 9(3): 377-389.
[7] Daojun XUE,Shaohua YU,Qi YANG,Nan CHI,Lan RAO,Xiangjun XIN,Wei LI,Songnian FU,Sheng CUI,Demin LIU,Zhuo LI,Aijun WEN,Chongxiu YU,Xinmei WANG. Frontier research of ultra-high-speed ultra-large-capacity and ultra-long-haul optical transmission[J]. Front. Optoelectron., 2016, 9(2): 123-137.
[8] Zhihua DING,Yi SHEN,Wen BAO,Peng LI. Fourier domain optical coherence tomography with ultralong depth range[J]. Front. Optoelectron., 2015, 8(2): 163-169.
[9] Zhao WU,Yu YU,Xinliang ZHANG. Chromatic dispersion monitoring using semiconductor optical amplifier[J]. Front. Optoelectron., 2014, 7(3): 399-405.
[10] Bushra NAWAZ, Rameez ASIF. Impact of polarization mode dispersion and nonlinearities on 2-channel DWDM chaotic communication systems[J]. Front Optoelec, 2013, 6(3): 312-317.
[11] Yashar E. MONFARED, A. MOJTAHEDINIA, A. R. MALEKI JAVAN, A. R. MONAJATI KASHANI. Highly nonlinear enhanced-core photonic crystal fiber with low dispersion for wavelength conversion based on four-wave mixing[J]. Front Optoelec, 2013, 6(3): 297-302.
[12] Xiang ZHOU. Enabling technologies and challenges for transmission of 400 Gb/s signals in 50 GHz channel grid[J]. Front Optoelec, 2013, 6(1): 30-45.
[13] Hamidine MAHAMADOU, Xiuhua YUAN, Eljack M. SARAH, Weizheng ZOU. Simulation and comprehensive assessment of single channel RZ-DPSK optical link by dispersion management with channel bit rate beyond 40 Gbits/s[J]. Front Optoelec, 2012, 5(3): 322-329.
[14] Yousaf KHAN, Xiangjun XIN, Aftab HUSSAIN, Liu BO, Shahryar SHAFIQUE. Generation and transmission of dispersion tolerant 10-Gbps RZ-OOK signal for radio over fiber link[J]. Front Optoelec, 2012, 5(3): 306-310.
[15] Saeed OLYAEE, Fahimeh TAGHIPOUR, Mahdieh IZADPANAH. Nearly zero-dispersion, low confinement loss, and small effective mode area index-guiding PCF at 1.55 μm wavelength[J]. Front Optoelec Chin, 2011, 4(4): 420-425.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed