|
|
|
Nonlinear optical response of graphene in terahertz and near-infrared frequency regime |
Yee Sin ANG1,Qinjun CHEN1,2,Chao ZHANG1,2,*( ) |
1. School of Physics, University of Wollongong, New South Wales 2522, Australia 2. Institute of Superconducting and Electronic Materials, University of Wollongong, New South Wales 2522, Australia |
|
|
|
|
Abstract In this review, we discuss our recent theoretical work on the nonlinear optical response of graphene and its sister structure in terahertz (THz) and near-infrared frequency regime. Due to Dirac-like linear energy-momentum dispersion, the third-order nonlinear current in graphene is much stronger than that in conventional semiconductors. The nonlinear current grows rapidly with increasing temperature and decreasing frequency. The third-order nonlinear current can be as strong as the linear current under moderate electric field strength of 104 V/cm. In bilayer graphene (BLG) with low energy trigonal warping effect, not only the optical response is strongly nonlinear, the optical nonlinearity is well-preserved at elevated temperature. In the presence of a bandgap (such as semihydrogenated graphene (SHG)), there exists two well separated linear response and nonlinear response peaks. This suggests that SHG can have a unique potential as a two-color nonlinear material in the THz frequency regime where the relative intensity of the two colors can be tuned with the electric field. In a graphene superlattice structure of Kronig-Penney type periodic potential, the Dirac cone is elliptically deformed. We found that not only the optical nonlinearity is preserved in such a system, the total optical response is further enhanced by a factor proportional to the band anisotropy. This suggests that graphene superlattice is another potential candidate in THz device application.
|
| Keywords
graphene
terahertz (THz) response
nonlinear effect
photomixing
|
|
Corresponding Author(s):
Chao ZHANG
|
|
Just Accepted Date: 26 August 2014
Online First Date: 28 October 2014
Issue Date: 13 February 2015
|
|
| 1 |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438(7065): 197-200
https://doi.org/10.1038/nature04233
pmid: 16281030
|
| 2 |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666-669
https://doi.org/10.1126/science.1102896
pmid: 15499015
|
| 3 |
Wallace P R. The band theory of graphite. Physical Review, 1947, 71(9): 622-634
https://doi.org/10.1103/PhysRev.71.622
|
| 4 |
Katsnelson M I, Novoselov K S, Geim A K. Chiral tunnelling and the Klein paradox in graphene. Nature Physics, 2006, 2(9): 620-625
https://doi.org/10.1038/nphys384
|
| 5 |
Klein O. Die reflexion von elektronen an einem potentialsprung nach der relativistischen dynamik von Dirac. Zeitschrift fur Physik, 1929, 53(3-4): 157-165
https://doi.org/10.1007/BF01339716
|
| 6 |
Young A F, Kim P. Quantum interference and Klein tunnelling in graphene heterojunctions. Nature Physics, 2009, 5(3): 222-226
https://doi.org/10.1038/nphys1198
|
| 7 |
Stander N, Huard B, Goldhaber-Gordon D. Evidence for Klein tunneling in graphene p-n junctions. Physical Review Letters, 2009, 102(2): 026807
https://doi.org/10.1103/PhysRevLett.102.026807
pmid: 19257307
|
| 8 |
Wright A R, Cao J C, Zhang C. Enhanced optical conductivity of bilayer graphene nanoribbons in the terahertz regime. Physical Review Letters, 2009, 103(20): 207401
https://doi.org/10.1103/PhysRevLett.103.207401
pmid: 20366009
|
| 9 |
Wang X L, Dou S X, Zhang C. Zero-gap materials for future spintronics, electronics and optics. NPG Asia Materials, 2010, 2(1): 31-38
https://doi.org/10.1038/asiamat.2010.7
|
| 10 |
Liu J, Ma Z, Wright A R, Zhang C. Orbital magnetization of graphene and graphene nanoribbons. Journal of Applied Physics, 2008, 103(10): 103711
https://doi.org/10.1063/1.2930875
|
| 11 |
Yu D C, Lupton E M, Gao H J, Zhang C, Liu F. A unified geometric rule for designing nanomagnetism in graphene. Nano Research, 2008, 1(6): 497-501
https://doi.org/10.1007/s12274-008-8053-0
|
| 12 |
Cai J Z, Lu L, Kong W J, Zhu H W, Zhang C, Wei B Q, Wu D H, Liu F. Pressure-induced transition in magnetoresistance of single-walled carbon nanotubes. Physical Review Letters, 2006, 97(2): 026402
https://doi.org/10.1103/PhysRevLett.97.026402
pmid: 16907465
|
| 13 |
Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L. Ultrahigh electron mobility in suspended graphene. Solid State Communications, 2008, 146(9-10): 351-355
https://doi.org/10.1016/j.ssc.2008.02.024
|
| 14 |
Chen J H, Jang C, Xiao S, Ishigami M, Fuhrer M S. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nature Nanotechnology, 2008, 3(4): 206-209
https://doi.org/10.1038/nnano.2008.58
pmid: 18654504
|
| 15 |
Geim A K, Novoselov K S. The rise of graphene. Nature Materials, 2007, 6(3): 183-191
https://doi.org/10.1038/nmat1849
pmid: 17330084
|
| 16 |
Xia F, Farmer D B, Lin Y M, Avouris P. Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Letters, 2010, 10(2): 715-718
https://doi.org/10.1021/nl9039636
pmid: 20092332
|
| 17 |
Schwierz F. Graphene transistors. Nature Nanotechnology, 2010, 5(7): 487-496
https://doi.org/10.1038/nnano.2010.89
pmid: 20512128
|
| 18 |
Zhang Y, Tan Y W, Stormer H L, Kim P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature, 2005, 438(7065): 201-204
https://doi.org/10.1038/nature04235
pmid: 16281031
|
| 19 |
Gusynin V P, Sharapov S G. Unconventional integer quantum Hall effect in graphene. Physical Review Letters, 2005, 95(14): 146801
https://doi.org/10.1103/PhysRevLett.95.146801
pmid: 16241680
|
| 20 |
Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K. Room-temperature quantum Hall effect in graphene. Science, 2007, 315(5817): 1379
https://doi.org/10.1126/science.1137201
pmid: 17303717
|
| 21 |
Ziegler K. Minimal conductivity of graphene: nonuniversal values from the Kubo formula. Physical Review B: Condensed Matter and Materials Physics, 2007, 75(23): 233407
https://doi.org/10.1103/PhysRevB.75.233407
|
| 22 |
Herbut I F, Juricic V, Vafek O. Coulomb interaction, ripples, and the minimal conductivity of graphene. Physical Review Letters, 2008, 100(4): 046403
https://doi.org/10.1103/PhysRevLett.100.046403
|
| 23 |
Peres N M R, Guinea F, Castro Neto A H. Electronic properties of disordered two-dimensional carbon. Physical Review B: Condensed Matter and Materials Physics, 2006, 73(12): 125411
https://doi.org/10.1103/PhysRevB.73.125411
|
| 24 |
Cserti J, Csordás A, Dávid G. Role of the trigonal warping on the minimal conductivity of bilayer graphene. Physical Review Letters, 2007, 99(6): 066802
https://doi.org/10.1103/PhysRevLett.99.066802
pmid: 17930851
|
| 25 |
Martin J, Akerman N, Ulbricht G, Lohmann T, Smet J H, von Klitzing K, Yacoby A. Observation of electron-hole puddles in graphene using a scanning single-electron transistor. Nature Physics, 2008, 4(2): 144-148
https://doi.org/10.1038/nphys781
|
| 26 |
Falkovsky L A, Pershoguba S S. Optical far-infrared properties of a graphene monolayer and multilayer. Physical Review B: Condensed Matter and Materials Physics, 2007, 76(15): 153410
https://doi.org/10.1103/PhysRevB.76.153410
|
| 27 |
Zhang C, Chen L, Ma Z. Orientation dependence of the optical spectra in graphene at high frequencies. Physical Review B, 2008, 77(24): 241402
|
| 28 |
Gusynin V P, Sharapov S G, Carbotte J P. Unusual microwave response of dirac quasiparticles in graphene. Physical Review Letters, 2006, 96(25): 256802
https://doi.org/10.1103/PhysRevLett.96.256802
pmid: 16907333
|
| 29 |
Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K. Fine structure constant defines visual transparency of graphene. Science, 2008, 320(5881): 1308
https://doi.org/10.1126/science.1156965
pmid: 18388259
|
| 30 |
Li Z Q, Henriksen E A, Jiang Z, Hao Z, Martin M C, Kim P, Stormer H L, Basov D N. Dirac charge dynamics in graphene by infrared spectroscopy. Nature Physics, 2008, 4(7): 532-535
https://doi.org/10.1038/nphys989
|
| 31 |
Kuzmenko A B, van Heumen E, Carbone F, van der Marel D. Universal optical conductance of graphite. Physical Review Letters, 2008, 100(11): 117401
https://doi.org/10.1103/PhysRevLett.100.117401
pmid: 18517825
|
| 32 |
Rycerz A, Tworzyd?o J, Beenakker C W J. Valley filter and valley valve in graphene. Nature Physics, 2007, 3(3): 172-175
https://doi.org/10.1038/nphys547
|
| 33 |
Gunlycke D, White C T. Graphene valley filter using a line defect. Physical Review Letters, 2011, 106(13): 136806
https://doi.org/10.1103/PhysRevLett.106.136806
pmid: 21517409
|
| 34 |
Garcia-Pomar J L, Cortijo A, Nieto-Vesperinas M. Fully valley-polarized electron beams in graphene. Physical Review Letters, 2008, 100(23): 236801
https://doi.org/10.1103/PhysRevLett.100.236801
pmid: 18643532
|
| 35 |
Pereira J M Jr, Peeters F M, Costa Filho R N, Farias G A. Valley polarization due to trigonal warping on tunneling electrons in graphene. Journal of Physics Condensed Matter, 2009, 21(4): 045301
https://doi.org/10.1088/0953-8984/21/4/045301
|
| 36 |
Chaves A, Covaci L, Rakhimov K Y, Farias G A, Peeters F M. Wave-packet dynamics and valley filter in strained graphene. Physical Review B: Condensed Matter and Materials Physics, 2010, 82(20): 205430
https://doi.org/10.1103/PhysRevB.82.205430
|
| 37 |
Moldovan D, Masir M R, Covaci L, Peeters F M. Resonant valley filtering of massive Dirac electrons. Physical Review B: Condensed Matter and Materials Physics, 2012, 86(11): 115431
https://doi.org/10.1103/PhysRevB.86.115431
|
| 38 |
Zhai F, Chang K. Valley filtering in graphene with a Dirac gap. Physical Review B: Condensed Matter and Materials Physics, 2012, 85(15): 155415
https://doi.org/10.1103/PhysRevB.85.155415
|
| 39 |
Péterfalvi C G, Oroszlány L, Lambert C J, Cserti J. Intraband electron focusing in bilayer graphene. New Journal of Physics, 2012, 14(6): 063028
https://doi.org/10.1088/1367-2630/14/6/063028
|
| 40 |
Majidi L, Zareyan M. Pseudospin polarized quantum transport in monolayer graphene. Physical Review B: Condensed Matter and Materials Physics, 2011, 83(11): 115422
https://doi.org/10.1103/PhysRevB.83.115422
|
| 41 |
San-Jose P, Prada E, McCann E, Schomerus H. Pseudospin valve in bilayer graphene: towards graphene-based pseudospintronics. Physical Review Letters, 2009, 102(24): 247204
https://doi.org/10.1103/PhysRevLett.102.247204
pmid: 19659043
|
| 42 |
Trushin M, Schliemann J. Pseudospin in optical and transport properties of graphene. Physical Review Letters, 2011, 107(15): 156801
https://doi.org/10.1103/PhysRevLett.107.156801
pmid: 22107311
|
| 43 |
Min H, Borghi G, Polini M, MacDonald A H. Pseudospin magnetism in graphene. Physical Review B, 2008, 77(4): 041407
|
| 44 |
Majidi L, Zareyan M. Enhanced Andreev reflection in gapped graphene. Physical Review B: Condensed Matter and Materials Physics, 2012, 86(7): 075443
https://doi.org/10.1103/PhysRevB.86.075443
|
| 45 |
Brey L, Fertig H A. Electronic states of graphene nanoribbons studied with the Dirac equation. Physical Review B: Condensed Matter and Materials Physics, 2006, 73(23): 235411
https://doi.org/10.1103/PhysRevB.73.235411
|
| 46 |
Han M Y, Ozyilmaz B, Zhang Y, Kim P. Energy band-gap engineering of graphene nanoribbons. Physical Review Letters, 2007, 98(20): 206805
https://doi.org/10.1103/PhysRevLett.98.206805
pmid: 17677729
|
| 47 |
Ezawa M. Peculiar width dependence of the electronic properties of carbon nanoribbons. Physical Review B: Condensed Matter and Materials Physics, 2006, 73(4): 045432
https://doi.org/10.1103/PhysRevB.73.045432
|
| 48 |
Park C H, Yang L, Son Y W, Cohen M L, Louie S G. Anisotropic behaviours of massless Dirac fermions in graphene under periodic potentials. Nature Physics, 2008, 4(3): 213-217
https://doi.org/10.1038/nphys890
|
| 49 |
Park C H, Yang L, Son Y W, Cohen M L, Louie S G. New generation of massless Dirac fermions in graphene under external periodic potentials. Physical Review Letters, 2008, 101(12): 126804
https://doi.org/10.1103/PhysRevLett.101.126804
pmid: 18851401
|
| 50 |
Park C H, Son Y W, Yang L, Cohen M L, Louie S G. Electron beam supercollimation in graphene superlattices. Nano Letters, 2008, 8(9): 2920-2924
https://doi.org/10.1021/nl801752r
pmid: 18720975
|
| 51 |
Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Ponomarenko L A, Jiang D, Geim A K. Strong suppression of weak localization in graphene. Physical Review Letters, 2006, 97(1): 016801
https://doi.org/10.1103/PhysRevLett.97.016801
pmid: 16907394
|
| 52 |
Suzuura H, Ando T. Crossover from symplectic to orthogonal class in a two-dimensional honeycomb lattice. Physical Review Letters, 2002, 89(26): 266603
https://doi.org/10.1103/PhysRevLett.89.266603
pmid: 12484845
|
| 53 |
Khveschenko D V. Electron localization properties in graphene. Physical Review Letters, 2006, 97: 036802
https://doi.org/10.1103/PhysRevLett.97.036802
pmid: 16907527
|
| 54 |
Dragoman D, Dragoman M. Giant thermoelectric effect in graphene. Applied Physics Letters, 2007, 91(20): 203116
https://doi.org/10.1063/1.2814080
|
| 55 |
Wei P, Bao W, Pu Y, Lau C N, Shi J. Anomalous thermoelectric transport of Dirac particles in graphene. Physical Review Letters, 2009, 102(16): 166808
https://doi.org/10.1103/PhysRevLett.102.166808
pmid: 19518743
|
| 56 |
Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N. Superior thermal conductivity of single-layer graphene. Nano Letters, 2008, 8(3): 902-907
https://doi.org/10.1021/nl0731872
pmid: 18284217
|
| 57 |
Kane C L, Mele E J. Quantum spin Hall effect in graphene. Physical Review Letters, 2005, 95(22): 226801
https://doi.org/10.1103/PhysRevLett.95.226801
pmid: 16384250
|
| 58 |
Nandkishore R, Levitov L S, Chubukov A V. Chiral superconductivity from repulsive interactions in doped graphene. Nature Physics, 2012, 8(2): 158-163
https://doi.org/10.1038/nphys2208
|
| 59 |
Sarma S D, Adam S, Hwang E H. Electronic transport in two-dimensional graphene. Reviews of Modern Physics, 2011, 83(2): 407-439
https://doi.org/10.1103/RevModPhys.83.407
|
| 60 |
Bonaccorso F, Sun Z, Hasan T, Ferrari A C. Graphene photonics and optoelectronics. Nature Photonics, 2010, 4(9): 611-622
https://doi.org/10.1038/nphoton.2010.186
|
| 61 |
Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K. The electronic properties of graphene. Reviews of Modern Physics, 2009, 81: 109-162
https://doi.org/10.1103/RevModPhys.81.109
|
| 62 |
Beenakker C W J. Colloquium: Andreev reflection and Klein tunneling in graphene. Reviews of Modern Physics, 2008, 80(4): 1337-1354
https://doi.org/10.1103/RevModPhys.80.1337
|
| 63 |
Hasan M Z, Kane C L. Colloquium: topological insulators. Reviews of Modern Physics, 2010, 82(4): 3045-3067
https://doi.org/10.1103/RevModPhys.82.3045
|
| 64 |
Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y, Yamada-Takamura Y. Experimental evidence for epitaxial silicene on diboride thin films. Physical Review Letters, 2012, 108(24): 245501
https://doi.org/10.1103/PhysRevLett.108.245501
pmid: 23004288
|
| 65 |
Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B, Le Lay G. Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Physical Review Letters, 2012, 108(15): 155501
https://doi.org/10.1103/PhysRevLett.108.155501
pmid: 22587265
|
| 66 |
Bianco E, Butler S, Jiang S, Restrepo O D, Windl W, Goldberger J E. Stability and exfoliation of germanane: a germanium graphane analogue. ACS Nano, 2013, 7(5): 4414-4421
|
| 67 |
Xu Y, Yan B, Zhang H J, Wang J, Xu G, Tang P, Duan W, Zhang S C. Large-gap quantum spin Hall insulators in tin films. Physical Review Letters, 2013, 111(13): 136804
https://doi.org/10.1103/PhysRevLett.111.136804
pmid: 24116803
|
| 68 |
Shareef S, Ang Y S, Zhang C. Room-temperature strong terahertz photon mixing in graphene. Journal of the Optical Society of America. B, Optical Physics, 2012, 29(3): 274-279
https://doi.org/10.1364/JOSAB.29.000274
|
| 69 |
Ang Y S, Sultan S, Zhang C. Nonlinear optical spectrum of bilayer graphene in the terahertz regime. Applied Physics Letters, 2010, 97(24): 243110
https://doi.org/10.1063/1.3527934
|
| 70 |
Ang Y S, Zhang C. Subgap optical conductivity in semihydrogenated graphene. Applied Physics Letters, 2011, 98(4): 042107
https://doi.org/10.1063/1.3549201
|
| 71 |
Ang Y S, Zhang C. Enhanced optical conductance in graphene superlattice due to anisotropic band dispersion. Journal of Physics. D, Applied Physics, 2012, 45(39): 395303
https://doi.org/10.1088/0022-3727/45/39/395303
|
| 72 |
Siegel P H. Terahertz technology. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 910-928
https://doi.org/10.1109/22.989974
|
| 73 |
Hendry E, Hale P J, Moger J, Savchenko A K, Mikhailov S A. Coherent nonlinear optical response of graphene. Physical Review Letters, 2010, 105(9): 097401
https://doi.org/10.1103/PhysRevLett.105.097401
pmid: 20868195
|
| 74 |
Mikhailov S A. Non-linear electromagnetic response of graphene. Europhysics Letters, 2007, 79(2): 27002
https://doi.org/10.1209/0295-5075/79/27002
|
| 75 |
Mikhailov S A, Ziegler K. Nonlinear electromagnetic response of graphene: frequency multiplication and the self-consistent-field effects. Journal of Physics Condensed Matter, 2008, 20(38): 384204
https://doi.org/10.1088/0953-8984/20/38/384204
|
| 76 |
Dragoman M, Neculoiu D, Deligeorgis G, Konstantinidis G, Dragoman D, Cismaru A, Muller A A, Plana R. Millimeter-wave generation via frequency multiplication in graphene. Applied Physics Letters, 2010, 97(9): 093101
https://doi.org/10.1063/1.3483872
|
| 77 |
Wright A R, Xu X G, Cao J C, Zhang C. Strong nonlinear optical response of graphene in the terahertz regime. Applied Physics Letters, 2009, 95(7): 072101
https://doi.org/10.1063/1.3205115
|
| 78 |
Lim G K, Chen Z L, Clark J, Goh R G S, Ng W H, Tan H W, Friend R H, Ho P K H, Chua L L. Giant broadband nonlinear optical absorption response in dispersed graphene single sheets. Nature Photonics, 2011, 5(9): 554-560
https://doi.org/10.1038/nphoton.2011.177
|
| 79 |
Wang J, Hernandez Y, Lotya M, Coleman J N, Blau W J. Broadband nonlinear optical response of graphene dispersions. Advanced Materials, 2009, 21(23): 2430-2435
https://doi.org/10.1002/adma.200803616
|
| 80 |
Hong S Y, Dadap J I, Petrone N, Yeh P C, Hone J, Osgood R M Jr. Optical third-harmonic generation in graphene. Physical Review X, 2013, 3(2): 021014
|
| 81 |
Wu S, Mao L, Jones A M, Yao W, Zhang C, Xu X. Quantum-enhanced tunable second-order optical nonlinearity in bilayer graphene. Nano Letters, 2012, 12(4): 2032-2036
https://doi.org/10.1021/nl300084j
pmid: 22369519
|
| 82 |
Ishikawa K L. Nonlinear optical response of graphene in time domain. Physical Review B, 2010, 82(20): 201402
|
| 83 |
Feynman R P. Forces in molecules. Physical Review, 1939, 56(4): 340-343
https://doi.org/10.1103/PhysRev.56.340
|
| 84 |
Zhang C. Frequency-dependent electrical transport under intense terahertz radiation. Physical Review B: Condensed Matter and Materials Physics, 2002, 66(8): 081105
https://doi.org/10.1103/PhysRevB.66.081105
|
| 85 |
Ludwig A W W, Fisher M P A, Shankar R, Grinstein G. Integer quantum Hall transition: an alternative approach and exact results. Physical Review B: Condensed Matter and Materials Physics, 1994, 50(11): 7526-7552
https://doi.org/10.1103/PhysRevB.50.7526
|
| 86 |
Chen C F, Park C H, Boudouris B W, Horng J, Geng B, Girit C, Zettl A, Crommie M F, Segalman R A, Louie S G, Wang F. Controlling inelastic light scattering quantum pathways in graphene. Nature, 2011, 471(7340): 617-620
https://doi.org/10.1038/nature09866
pmid: 21412234
|
| 87 |
Gao F, Wang G, Zhang C. Strong photon-mixing of terahertz waves in semiconductor quantum wells induced by Rashba spin-orbit coupling. Nanotechnology, 2008, 19(46): 465401
https://doi.org/10.1088/0957-4484/19/46/465401
pmid: 21836243
|
| 88 |
Wolff P A, Pearson G A. Theory of optical mixing by mobile carriers in semiconductors. Physical Review Letters, 1966, 17(19): 1015-1017
https://doi.org/10.1103/PhysRevLett.17.1015
|
| 89 |
Dong H M, Xu W, Tan R B. Temperature relaxation and energy loss of hot carriers in graphene. Solid State Communications, 2010, 150(37-38): 1770-1773
https://doi.org/10.1016/j.ssc.2010.07.016
|
| 90 |
Sun D, Wu Z K, Divin C, Li X, Berger C, de Heer W, First P, Norris T. Ultrafast relaxation of excited Dirac fermions in epitaxial graphene using optical differential transmission spectroscopy. Physical Review Letters, 2008, 101(15): 157402
https://doi.org/10.1103/PhysRevLett.101.157402
pmid: 18999638
|
| 91 |
Butscher S, Milde F, Hirtschulz M, Malic E, Knorr A. Hot electron relaxation and phonon dynamics in graphene. Applied Physics Letters, 2007, 91(20): 203103
https://doi.org/10.1063/1.2809413
|
| 92 |
Bao W S, Liu S Y, Lei X L. Hot-electron transport in graphene driven by intense terahertz fields. Physics Letters. [Part A], 2010, 374(10): 1266-1269
https://doi.org/10.1016/j.physleta.2009.12.076
|
| 93 |
McCann E, Fal’ko V I. Landau-level degeneracy and quantum Hall effect in a graphite bilayer. Physical Review Letters, 2006, 96(8): 086805
https://doi.org/10.1103/PhysRevLett.96.086805
pmid: 16606214
|
| 94 |
Koshino M, Ando T. Transport in bilayer graphene: calculations within a self-consistent Born approximation. Physical Review B: Condensed Matter and Materials Physics, 2006, 73(24): 245403
https://doi.org/10.1103/PhysRevB.73.245403
|
| 95 |
McCann C, Abergel D S L, Fal’ko V I. Electrons in bilayer graphene. Solid State Communications, 2007, 143(-2): 110-115
https://doi.org/10.1016/j.ssc.2007.03.054
|
| 96 |
Chen L, Ma Z, Zhang C. Vertical absorption edge and temperature dependent resistivity in semihydrogenated graphene. Applied Physics Letters, 2010, 96(2): 023107
https://doi.org/10.1063/1.3292026
|
| 97 |
Edwards W F. Special relativity in anisotropic space. American Journal of Physics, 1963, 31(7): 482-489
|
| 98 |
Moon C Y, Han J, Lee H, Choi H J. Low-velocity anisotropic Dirac fermions on the side surface of topological insulators. Physical Review B: Condensed Matter and Materials Physics, 2011, 84(19): 195425
https://doi.org/10.1103/PhysRevB.84.195425
|
| 99 |
Park J, Lee G, Wolff-Fabris F, Koh Y Y, Eom M J, Kim Y K, Farhan M A, Jo Y J, Kim C, Shim J H, Kim J S. Anisotropic Dirac fermions in a Bi square net of SrMnBi2. Physical Review Letters, 2011, 107(12): 126402
https://doi.org/10.1103/PhysRevLett.107.126402
pmid: 22026779
|
| 100 |
Wang J, Hernandez Y, Lotya M, Coleman J N, Blau W J. Broadband nonlinear optical response of graphene dispersions. Advanced Materials, 2009, 21(23): 2430-2435
https://doi.org/10.1002/adma.200803616
|
| 101 |
Lim G K, Chen Z L, Clark J, Goh R G S, Ng W H, Tan H W, Friend R H, Ho P K H, Chua L L. Giant broadband nonlinear optical absorption response in dispersed graphene single sheets. Nature photonics, 2011, 5(9): 554-560
|
| 102 |
Hwang E H, Das Sarma S. Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene. Physical Review B: Condensed Matter and Materials Physics, 2008, 77(11): 115449
https://doi.org/10.1103/PhysRevB.77.115449
|
| 103 |
Song J C, Reizer M Y, Levitov L S. Disorder-assisted electron-phonon scattering and cooling pathways in graphene. Physical Review Letters, 2012, 109(10): 106602
https://doi.org/10.1103/PhysRevLett.109.106602
pmid: 23005313
|
| 104 |
Betz A C, Jhang S H, Pallecchi E, Ferreira R, Feve G, Berroir J M, Placais B. Supercollision cooling in undoped graphene. Nature Physics, 2012, 9(2): 109-112
https://doi.org/10.1038/nphys2494
|
| 105 |
Graham M W, Shi S F, Ralph D C, Park J, McEuen P L. Photocurrent measurements of supercollision cooling in graphene. Nature Physics, 2012, 9(2): 103-108
https://doi.org/10.1038/nphys2493
|
| 106 |
Xu X G, Cao J C. Nonlinear response induced strong absorptance of graphene in the terahertz regime. Modern Physics Letters B, 2010, 24(21): 2243-2249
https://doi.org/10.1142/S0217984910024626
|
| 107 |
Weiss D, Zhang C, Gerhardts R R, Klitzing K, Weimann G. Density of states in a two-dimensional electron gas in the presence of a one-dimensional superlattice potential. Physical Review B: Condensed Matter and Materials Physics, 1989, 39(17): 13020-13023
https://doi.org/10.1103/PhysRevB.39.13020
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|