Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2015, Vol. 8 Issue (1) : 68-72    https://doi.org/10.1007/s12200-014-0431-5
RESEARCH ARTICLE
A high Q terahertz asymmetrically coupled resonator and its sensing performance
Dongwei WU,Jianjun LIU,Hao HAN,Zhanghua HAN,Zhi HONG()
Centre for THz Research, China Jiliang University, Hangzhou 310018, China
 Download: PDF(891 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A terahertz asymmetrically coupled resonator (ACR) consisting of two different split ring resonators (SRRs) was designed. Using finite difference time domain (FDTD), the transmission of ACR and its refractive-index-based sensing performance were simulated and analyzed. Results show that the ACR possesses a sharp coupled transparent peak or high quality factor (Q), its intensity and bandwidth can be easily adjusted by spacing the two SRRs. Furthermore, the resonator exhibits high sensitivity of 75 GHz/RIU and figure of merit (FOM) of 4.4, much higher than the individual SRR sensors. The ACR were fabricated by using laser-induced and chemical non-electrolytic plating with copper on polyimide substrate, the transmission of which measured by terahertz time-domain spectroscopy system is in good agreement with simulations.

Keywords terahertz      asymmetrically coupled resonator (ACR)      refractive index sensing      high quality factor (Q)     
Corresponding Author(s): Zhi HONG   
Online First Date: 19 June 2014    Issue Date: 13 February 2015
 Cite this article:   
Dongwei WU,Jianjun LIU,Hao HAN, et al. A high Q terahertz asymmetrically coupled resonator and its sensing performance[J]. Front. Optoelectron., 2015, 8(1): 68-72.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-014-0431-5
https://academic.hep.com.cn/foe/EN/Y2015/V8/I1/68
Fig.1  Schematic view of the proposed ACR
Fig.2  Microscopic picture of the fabricated ACR
Fig.3  Transmittance of ACR and SRRs when d = 30 μm
Fig.4  Distribution of induced currents at resonances ω1 (a) and ω2 (b)
Fig.5  Simulated transmission of ACR with different distances d
Fig.6  Frequency shift of the resonant peak vs refractive index of analyte
Fig.7  Comparison of transmittance spectra between simulation (black line) and experiment (red line), the distance d is 40 μm (a) and 90 μm (b)
1 Smith D R, Pendry J B, Wiltshire M C K. Metamaterials and negative refractive index. Science, 2004, 305(5685): 788–792
https://doi.org/10.1126/science.1096796 pmid: 15297655
2 Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R. Metamaterial electromagnetic cloak at microwave frequencies. Science, 2006, 314(5801): 977–980
https://doi.org/10.1126/science.1133628 pmid: 17053110
3 Driscoll T, Andreev G O, Basov D N, Palit S, Cho S Y, Jokerst N M, Smith D R. Tuned permeability in terahertz split-ring resonators for devices and sensors. Applied Physics Letters, 2007, 91(6): 062511
https://doi.org/10.1063/1.2768300
4 Chen T, Li S Y, Sun H. Metamaterials application in sensing. Sensors (Basel, Switzerland), 2012, 12(3): 2742–2765
https://doi.org/10.3390/s120302742 pmid: 22736975
5 Al-Naib I A I, Jansen C, Koch M. Thin-film sensing with planar asymmetric metamaterial resonators. Applied Physics Letters, 2008, 93(8): 083507-1–083507-3
https://doi.org/10.1063/1.2976636
6 O’Hara J F, Singh R, Brener I, Smirnova E, Han J, Taylor A J, Zhang W L. Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations. Optics Express, 2008, 16(3): 1786–1795
https://doi.org/10.1364/OE.16.001786 pmid: 18542258
7 Sun Y, Xia X, Feng H, Yang H, Gu C, Wang L. Modulated terahertz responses of split ring resonators by nanometer thick liquid layers. Applied Physics Letters, 2008, 92(22): 221101-1–221101-3
https://doi.org/10.1063/1.2939215
8 Fedotov V A, Rose M, Prosvirnin S L, Papasimakis N, Zheludev N I. Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. Physical Review Letters, 2007, 99(14): 147401-1–147401-4
https://doi.org/10.1103/PhysRevLett.99.147401 pmid: 17930720
9 Aydin K, Pryce I M, Atwater H A. Symmetry breaking and strong coupling in planar optical metamaterials. Optics Express, 2010, 18(13): 13407–13417
https://doi.org/10.1364/OE.18.013407 pmid: 20588471
10 Cao W, Singh R J, Al-Naib I A, He M X, Taylor A J, Zhang W L. Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials. Optics Letters, 2012, 37(16): 3366–3368
https://doi.org/10.1364/OL.37.003366 pmid: 23381259
11 Al-Naib I, Singh R, Rockstuh C, Lederer F, Delprat S, Rocheleau D, Chaker M, Ozaki T, Morandotti R. Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials. Applied Physics Letters, 2012, 101(7): 071108-1–071108-4
https://doi.org/10.1063/1.4745790
12 Chen C Y, Un I W, Tai N H, Yen T J. Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance. Optics Express, 2009, 17(17): 15372–15380
https://doi.org/10.1364/OE.17.015372 pmid: 19688015
13 Hao F, Nordlander P, Sonnefraud Y, Van Dorpe P, Maier S A. Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing. ACS Nano, 2009, 3(3): 643–652
https://doi.org/10.1021/nn900012r pmid: 19309172
14 Sherry L J, Chang S H, Schatz G C, Van Duyne R P, Wiley B J, Xia Y. Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Letters, 2005, 5(10): 2034–2038
https://doi.org/10.1021/nl0515753 pmid: 16218733
15 Wang W T, Liu J J, Li X J, Han H, Hong Z. Direct fabrication of terahertz wire-grid polarizer and filter by laser induced and non-electrolytic plating. Acta Optica Sinica, 2012, 32(12): 1231002-1–1231002-5 (in Chinese)
https://doi.org/10.3788/AOS201232.1231002
16 Wu D W, Liu J J, Li H Y, Han H, Hong Z. Fabrication of metamaterial terahertz devices by laser Induced and non-electrolytic plating with copper using semiconductor laser. Acta Optica Sinica, 2013, 33(12): 1223002-1–1223002-5 (in Chinese)
https://doi.org/10.3788/AOS201333.1223002
[1] Jiayu LI, Yijun XIE, Ping SUN. Edge detection on terahertz pulse imaging of dehydrated cutaneous malignant melanoma embedded in paraffin[J]. Front. Optoelectron., 2019, 12(3): 317-323.
[2] Kang LIU, Pingjie HUANG, Xi-Cheng ZHANG. Terahertz wave generation from ring-Airy beam induced plasmas and remote detection by terahertz-radiation-enhanced-emission-of-fluorescence: a review[J]. Front. Optoelectron., 2019, 12(2): 117-147.
[3] Feidi XIANG, Kejia WANG, Zhengang YANG, Jinsong LIU, Shenglie WANG. A direct method to calculate second-order two-dimensional terahertz spectroscopy in frequency-domain based on classical theory[J]. Front. Optoelectron., 2018, 11(4): 413-418.
[4] Kejia WANG, Xinyang GU, Jinsong LIU, Zhengang YANG, Shenglie WANG. Proposal for CEP measurement based on terahertz air photonics[J]. Front. Optoelectron., 2018, 11(4): 407-412.
[5] Wenshu MA, Qi LI, Jianye LU, Liyu SUN. De-noising research on terahertz holographic reconstructed image based on weighted nuclear norm minimization method[J]. Front. Optoelectron., 2018, 11(3): 267-274.
[6] Chenghong WU, Xinyang MIAO, Kun ZHAO. Identifying PM2.5 samples collected in different environment by using terahertz time-domain spectroscopy[J]. Front. Optoelectron., 2018, 11(3): 256-260.
[7] Fabrizio BUCCHERI, Pingjie HUANG, Xi-Cheng ZHANG. Generation and detection of pulsed terahertz waves in gas: from elongated plasmas to microplasmas[J]. Front. Optoelectron., 2018, 11(3): 209-244.
[8] Weichong TANG, Zili ZHANG, Ke XIAO, Changchun ZHAO, Zhiyuan ZHENG. Terahertz frequency characterization of anisotropic structure of tourmaline[J]. Front. Optoelectron., 2017, 10(4): 409-413.
[9] Chen JIANG, Honglei ZHAN, Kun ZHAO, Cheng FU. Characterization of the cooling process of solid n-alkanes via terahertz spectroscopy[J]. Front. Optoelectron., 2017, 10(2): 132-137.
[10] Ning LI,Honglei ZHAN,Kun ZHAO,Zhenwei ZHANG,Chenyu LI,Cunlin ZHANG. Characterizing PM2.5 in Beijing and Shanxi Province using terahertz radiation[J]. Front. Optoelectron., 2016, 9(4): 544-548.
[11] Mikhail ESAULKOV,Olga KOSAREVA,Vladimir MAKAROV,Nikolay PANOV,Alexander SHKURINOV. Simultaneous generation of nonlinear optical harmonics and terahertz radiation in air: polarization discrimination of various nonlinear contributions[J]. Front. Optoelectron., 2015, 8(1): 73-80.
[12] Xiaoling ZHANG,Jianqiang GU,Jiaguang HAN,Weili ZHANG. Tailoring electromagnetic responses in terahertz superconducting metamaterials[J]. Front. Optoelectron., 2015, 8(1): 44-56.
[13] Hou-Tong CHEN. Semiconductor activated terahertz metamaterials[J]. Front. Optoelectron., 2015, 8(1): 27-43.
[14] Qian LI,Honglei ZHAN,Fangli QIN,Wujun JIN,Honglan LIU,Kun ZHAO. Detecting NO--3 concentration in nitrate solutions using terahertz time-domain spectroscopy[J]. Front. Optoelectron., 2015, 8(1): 62-67.
[15] Qi JIN,Jinsong LIU,Kejia WANG,Zhengang YANG,Shenglie WANG,Kefei YE. Oscillation effect in frequency domain current from a photoconductive antenna via double-probe-pulse terahertz detection technique[J]. Front. Optoelectron., 2015, 8(1): 104-109.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed