|
|
|
Semiconductor activated terahertz metamaterials |
Hou-Tong CHEN( ) |
| Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA |
|
|
|
|
Abstract Metamaterials have been developed as a new class of artificial effective media realizing many exotic phenomena and unique properties not normally found in nature. Metamaterials enable functionality through structure design, facilitating applications by addressing the severe material issues in the terahertz frequency range. Consequently, prototype functional terahertz devices have been demonstrated, including filters, antireflection coatings, perfect absorbers, polarization converters, and arbitrary wavefront shaping devices. Further integration of functional materials into metamaterial structures have enabled actively and dynamically switchable and frequency tunable terahertz metamaterials through the application of external stimuli. The enhanced light-matter interactions in active terahertz metamaterials may result in unprecedented control and manipulation of terahertz radiation, forming the foundation of many terahertz applications. In this paper, we review the progress during the past few years in this rapidly growing research field. We particularly focus on the design principles and realization of functionalities using single-layer and few-layer terahertz planar metamaterials, and active terahertz metamaterials through the integration of semiconductors to achieve switchable and frequency-tunable response.
|
| Keywords
terahertz
metamaterials
semiconductor
modulation
|
|
Corresponding Author(s):
Hou-Tong CHEN
|
|
Online First Date: 31 July 2014
Issue Date: 13 February 2015
|
|
| 1 |
Veselago V G. The electrodynamics of substances with simultaneously negative values of ? and μ. Soviet Physics Uspekhi-USSR, 1968, 10(4): 509–514
https://doi.org/10.1070/PU1968v010n04ABEH003699
|
| 2 |
Pendry J B, Holden A J, Robbins D J, Stewart W J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075–2084
https://doi.org/10.1109/22.798002
|
| 3 |
Pendry J B, Holden A J, Stewart W J, Youngs I. Extremely low frequency plasmons in metallic mesostructures. Physical Review Letters, 1996, 76(25): 4773–4776
https://doi.org/10.1103/PhysRevLett.76.4773
pmid: 10061377
|
| 4 |
Wu D M, Fang N, Sun C, Zhang X, Padilla W J, Basov D N, Smith D R, Schultz S. Terahertz plasmonic high pass filter. Applied Physics Letters, 2003, 83(1): 201–203
https://doi.org/10.1063/1.1591083
|
| 5 |
Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S. Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters, 2000, 84(18): 4184–4187
https://doi.org/10.1103/PhysRevLett.84.4184
pmid: 10990641
|
| 6 |
Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction. Science, 2001, 292(5514): 77–79
https://doi.org/10.1126/science.1058847
pmid: 11292865
|
| 7 |
Pendry J B. Negative refraction makes a perfect lens. Physical Review Letters, 2000, 85(18): 3966–3969
https://doi.org/10.1103/PhysRevLett.85.3966
pmid: 11041972
|
| 8 |
Fang N, Lee H, Sun C, Zhang X. Sub-diffraction-limited optical imaging with a silver superlens. Science, 2005, 308(5721): 534–537
https://doi.org/10.1126/science.1108759
pmid: 15845849
|
| 9 |
Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields. Science, 2006, 312(5781): 1780–1782
https://doi.org/10.1126/science.1125907
pmid: 16728597
|
| 10 |
Leonhardt U. Optical conformal mapping. Science, 2006, 312(5781): 1777–1780
https://doi.org/10.1126/science.1126493
pmid: 16728596
|
| 11 |
Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R. Metamaterial electromagnetic cloak at microwave frequencies. Science, 2006, 314(5801): 977–980
https://doi.org/10.1126/science.1133628
pmid: 17053110
|
| 12 |
Yen T J, Padilla W J, Fang N, Vier D C, Smith D R, Pendry J B, Basov D N, Zhang X. Terahertz magnetic response from artificial materials. Science, 2004, 303(5663): 1494–1496
https://doi.org/10.1126/science.1094025
pmid: 15001772
|
| 13 |
Moser H O, Casse B D F, Wilhelmi O, Saw B T. Terahertz response of a microfabricated rod-split-ring-resonator electromagnetic metamaterial. Physical Review Letters, 2005, 94(6): 063901
https://doi.org/10.1103/PhysRevLett.94.063901
pmid: 15783730
|
| 14 |
Linden S, Enkrich C, Wegener M, Zhou J, Koschny T, Soukoulis C M. Magnetic response of metamaterials at 100 terahertz. Science, 2004, 306(5700): 1351–1353
https://doi.org/10.1126/science.1105371
pmid: 15550664
|
| 15 |
Shalaev V M, Cai W, Chettiar U K, Yuan H K, Sarychev A K, Drachev V P, Kildishev A V. Negative index of refraction in optical metamaterials. Optics Letters, 2005, 30(24): 3356–3358
https://doi.org/10.1364/OL.30.003356
pmid: 16389830
|
| 16 |
Zhang S, Fan W, Panoiu N C, Malloy K J, Osgood R M, Brueck S R J. Experimental demonstration of near-infrared negative-index metamaterials. Physical Review Letters, 2005, 95(13): 137404
https://doi.org/10.1103/PhysRevLett.95.137404
pmid: 16197179
|
| 17 |
Enkrich C, Wegener M, Linden S, Burger S, Zschiedrich L, Schmidt F, Zhou J F, Koschny T, Soukoulis C M. Magnetic metamaterials at telecommunication and visible frequencies. Physical Review Letters, 2005, 95(20): 203901
https://doi.org/10.1103/PhysRevLett.95.203901
pmid: 16384056
|
| 18 |
Chen H T, O’Hara J F, Azad A K, Taylor A J. Manipulation of terahertz radiation using metamaterials. Laser & Photonics Reviews, 2011, 5(4): 513–533
https://doi.org/10.1002/lpor.201000043
|
| 19 |
Luo L, Chatzakis I, Wang J, Niesler F B P, Wegener M, Koschny T, Soukoulis C M. Broadband terahertz generation from metamaterials. Nature Communications, 2014, 5: 3055
https://doi.org/10.1038/ncomms4055
pmid: 24402324
|
| 20 |
Ferguson B, Zhang X C. Materials for terahertz science and technology. Nature Materials, 2002, 1(1): 26–33
https://doi.org/10.1038/nmat708
pmid: 12618844
|
| 21 |
Tonouchi M. Cutting-edge terahertz technology. Nature Photonics, 2007, 1(2): 97–105
https://doi.org/10.1038/nphoton.2007.3
|
| 22 |
Azad A K, Dai J, Zhang W. Transmission properties of terahertz pulses through subwavelength double split-ring resonators. Optics Letters, 2006, 31(5): 634–636
https://doi.org/10.1364/OL.31.000634
pmid: 16570422
|
| 23 |
Chen H T, O’Hara J F, Taylor A J, Averitt R D, Highstrete C, Lee M, Padilla W J. Complementary planar terahertz metamaterials. Optics Express, 2007, 15(3): 1084–1095
https://doi.org/10.1364/OE.15.001084
pmid: 19532336
|
| 24 |
Singh R, Smirnova E, Taylor A J, O’Hara J F, Zhang W. Optically thin terahertz metamaterials. Optics Express, 2008, 16(9): 6537–6543
https://doi.org/10.1364/OE.16.006537
pmid: 18545357
|
| 25 |
Chiam S Y, Singh R, Gu J Q, Han J G, Zhang W L, Bettiol A A. Increased frequency shifts in high aspect ratio terahertz split ring resonators. Applied Physics Letters, 2009, 94(6): 064102
https://doi.org/10.1063/1.3079419
|
| 26 |
Chiam S Y, Singh R, Zhang W L, Bettiol A A. Controlling metamaterial resonances via dielectric and aspect ratio effects. Applied Physics Letters, 2010, 97(19): 191906
https://doi.org/10.1063/1.3514248
|
| 27 |
O’Hara J F, Singh R, Brener I, Smirnova, Han J, Taylor A J, Zhang W. Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations. Optics Express, 2008, 16(3): 1786–1795
https://doi.org/10.1364/OE.16.001786
pmid: 18542258
|
| 28 |
Driscoll T, Andreev G O, Basov D N, Palit S, Cho S Y, Jokerst N M, Smith D R. Tuned permeability in terahertz split-ring resonators for devices and sensors. Applied Physics Letters, 2007, 91(6): 062511
https://doi.org/10.1063/1.2768300
|
| 29 |
Chen H T, Yang H, Singh R, O’Hara J F, Azad A K, Trugman S A, Jia Q X, Taylor A J. Tuning the resonance in high-temperature superconducting terahertz metamaterials. Physical Review Letters, 2010, 105(24): 247402
https://doi.org/10.1103/PhysRevLett.105.247402
pmid: 21231556
|
| 30 |
Katsarakis N, Konstantinidis G, Kostopoulos A, Penciu R S, Gundogdu T F, Kafesaki M, Economou E N, Koschny T, Soukoulis C M. Magnetic response of split-ring resonators in the far-infrared frequency regime. Optics Letters, 2005, 30(11): 1348–1350
https://doi.org/10.1364/OL.30.001348
pmid: 15981529
|
| 31 |
Quan B G, Xu X L, Yang H F, Xia X X, Wang Q, Wang L, Gu C Z, Li C, Li F. Time-resolved broadband analysis of split ring resonators in terahertz region. Applied Physics Letters, 2006, 89(4): 041101
https://doi.org/10.1063/1.2220060
|
| 32 |
Rockstuhl C, Lederer F, Etrich C, Zentgraf T, Kuhl J, Giessen H. On the reinterpretation of resonances in split-ring-resonators at normal incidence. Optics Express, 2006, 14(19): 8827–8836
https://doi.org/10.1364/OE.14.008827
pmid: 19529264
|
| 33 |
Padilla W J, Taylor A J, Highstrete C, Lee M, Averitt R D. Dynamical electric and magnetic metamaterial response at terahertz frequencies. Physical Review Letters, 2006, 96(10): 107401
https://doi.org/10.1103/PhysRevLett.96.107401
pmid: 16605787
|
| 34 |
Driscoll T, Andreev G O, Basov D N, Palit S, Ren T, Mock J, Cho S Y, Jokerst N M, Smith D R. Quantitative investigation of a terahertz artificial magnetic resonance using oblique angle spectroscopy. Applied Physics Letters, 2007, 90(9): 092508
https://doi.org/10.1063/1.2679766
|
| 35 |
Padilla W J, Aronsson M T, Highstrete C, Lee M, Taylor A J, Averitt R D. Electrically resonant terahertz metamaterials: Theoretical and experimental investigations. Physical Review B, 2007, 75(4): 041102
https://doi.org/10.1103/PhysRevB.75.041102
|
| 36 |
Padilla W J. Group theoretical description of artificial electromagnetic metamaterials. Optics Express, 2007, 15(4): 1639–1646
https://doi.org/10.1364/OE.15.001639
pmid: 19532398
|
| 37 |
O’Hara J F, Smirnova E, Azad A K, Chen H-T, Taylor A J. Effects of microstructure variations on macroscopic terahertz metafilm properties. Active and Passive Electronic Components, 2007, 2007: 49691
|
| 38 |
O’Hara J F, Smirnova E, Chen H T, Taylor A J, Averitt R D, Highstrete C, Lee M, Padilla W J. Properties of planar electric metamaterials for novel terahertz applications. Journal of Nanoelectronics and Optoelectronics, 2007, 2(1): 90–95
https://doi.org/10.1166/jno.2007.008
|
| 39 |
Azad A K, Taylor A J, Smirnova E, O’Hara J F. Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators. Applied Physics Letters, 2008, 92(1): 011119
https://doi.org/10.1063/1.2829791
|
| 40 |
Fedotov V A, Rose M, Prosvirnin S L, Papasimakis N, Zheludev N I. Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. Physical Review Letters, 2007, 99(14): 147401
https://doi.org/10.1103/PhysRevLett.99.147401
pmid: 17930720
|
| 41 |
Singh R, Al-Naib I A I, Koch M, Zhang W. Sharp Fano resonances in THz metamaterials. Optics Express, 2011, 19(7): 6312–6319
https://doi.org/10.1364/OE.19.006312
pmid: 21451657
|
| 42 |
Munk B A. Frequency Selective Surfaces: Theory and Design. New York: John Wiley & Sons, 2000
|
| 43 |
Smith D R, Vier D C, Koschny T, Soukoulis C M. Electromagnetic parameter retrieval from inhomogeneous metamaterials. Physical Review E, 2005, 71(3): 036617
https://doi.org/10.1103/PhysRevE.71.036617
pmid: 15903615
|
| 44 |
Holloway C L, Kuester E F, Gordon J A, O’Hara J, Booth J, Smith D R. An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials. IEEE Antennas and Propagation Magazine, 2012, 54(2): 10–35
https://doi.org/10.1109/MAP.2012.6230714
|
| 45 |
Chen H T. Interference theory of metamaterial perfect absorbers. Optics Express, 2012, 20(7): 7165–7172
https://doi.org/10.1364/OE.20.007165
pmid: 22453398
|
| 46 |
Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J. Perfect metamaterial absorber. Physical Review Letters, 2008, 100(20): 207402
https://doi.org/10.1103/PhysRevLett.100.207402
pmid: 18518577
|
| 47 |
Tao H, Landy N I, Bingham C M, Zhang X, Averitt R D, Padilla W J. A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Optics Express, 2008, 16(10): 7181–7188
https://doi.org/10.1364/OE.16.007181
pmid: 18545422
|
| 48 |
Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R, Padilla W J. Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging. Physical Review B, 2009, 79(12): 125104
https://doi.org/10.1103/PhysRevB.79.125104
|
| 49 |
Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J, Averitt R D. Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization. Physical Review B, 2008, 78(24): 241103
https://doi.org/10.1103/PhysRevB.78.241103
|
| 50 |
Diem M, Koschny T, Soukoulis C M. Wide-angle perfect absorber/thermal emitter in the terahertz regime. Physical Review B, 2009, 79(3): 033101
https://doi.org/10.1103/PhysRevB.79.033101
|
| 51 |
Shchegolkov D Y, Azad A K, O’Hara J F, Simakov E I. Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers. Physical Review B, 2010, 82(20): 205117
https://doi.org/10.1103/PhysRevB.82.205117
|
| 52 |
Wen Q Y, Zhang H W, Xie Y S, Yang Q H, Liu Y L. Dual band terahertz metamaterial absorber: design, fabrication, and characterization. Applied Physics Letters, 2009, 95(24): 241111
https://doi.org/10.1063/1.3276072
|
| 53 |
Ye Y Q, Jin Y, He S L. Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime. Journal of the Optical Society of America. B, 2010, 27(3): 498–504
https://doi.org/10.1364/JOSAB.27.000498
|
| 54 |
Tao H, Bingham C M, Pilon D, Fan K B, Strikwerda A C, Shrekenhamer D, Padilla W J, Zhang X, Averitt R D. A dual band terahertz metamaterial absorber. Journal of Physics. D, 2010, 43(22): 225102
https://doi.org/10.1088/0022-3727/43/22/225102
|
| 55 |
Shen X, Yang Y, Zang Y, Gu J, Han J, Zhang W, Cui T J. Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation. Applied Physics Letters, 2012, 101(15): 154102
https://doi.org/10.1063/1.4757879
|
| 56 |
Huang L, Chowdhury D R, Ramani S, Reiten M T, Luo S N, Taylor A J, Chen H T. Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band. Optics Letters, 2012, 37(2): 154–156
https://doi.org/10.1364/OL.37.000154
pmid: 22854451
|
| 57 |
Huang L, Chowdhury D R, Ramani S, Reiten M T, Luo S N, Azad A K, Taylor A J, Chen H T. Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers. Applied Physics Letters, 2012, 101(10): 101102
https://doi.org/10.1063/1.4749823
|
| 58 |
Wen Q Y, Xie Y S, Zhang H W, Yang Q H, Li Y X, Liu Y L. Transmission line model and fields analysis of metamaterial absorber in the terahertz band. Optics Express, 2009, 17(22): 20256–20265
https://doi.org/10.1364/OE.17.020256
pmid: 19997251
|
| 59 |
Chen H T, Zhou J, O’Hara J F, Chen F, Azad A K, Taylor A J. Antireflection coating using metamaterials and identification of its mechanism. Physical Review Letters, 2010, 105(7): 073901
https://doi.org/10.1103/PhysRevLett.105.073901
pmid: 20868044
|
| 60 |
Chen H T, Zhou J F, O’Hara J F, Taylor A J. A numerical investigation of metamaterial antireflection coatings. Terahertz Science and Technology, 2010, 3(2): 66–73
|
| 61 |
Strikwerda A C, Fan K, Tao H, Pilon D V, Zhang X, Averitt R D. Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies. Optics Express, 2009, 17(1): 136–149
https://doi.org/10.1364/OE.17.000136
pmid: 19129881
|
| 62 |
Peralta X G, Smirnova E I, Azad A K, Chen H T, Taylor A J, Brener I, O’Hara J F. Metamaterials for THz polarimetric devices. Optics Express, 2009, 17(2): 773–783
https://doi.org/10.1364/OE.17.000773
pmid: 19158890
|
| 63 |
Cong L Q, Cao W, Tian Z, Gu J Q, Han J G, Zhang W L. Manipulating polarization states of terahertz radiation using metamaterials. New Journal of Physics, 2012, 14(11): 115013
https://doi.org/10.1088/1367-2630/14/11/115013
|
| 64 |
Zalkovskij M, Malureanu R, Kremers C, Chigrin D N, Novitsky A, Zhukovsky S, Tang P T, Jepsen P U, Lavrinenko A V. Optically active Babinet planar metamaterial film for terahertz polarization manipulation. Laser & Photonics Reviews, 2013, 7(5): 810–817
https://doi.org/10.1002/lpor.201300034
|
| 65 |
Markovich D L, Andryieuski A, Zalkovskij M, Malureanu R, Lavrinenko A V. Metamaterial polarization converter analysis: limits of performance. Applied Physics B, , 2013, 112(2): 143–152
https://doi.org/10.1007/s00340-013-5383-8
|
| 66 |
Chiang Y J, Yen T J. A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission. Applied Physics Letters, 2013, 102(1): 011129
https://doi.org/10.1063/1.4774300
|
| 67 |
Weis P, Paul O, Imhof C, Beigang R, Rahm M. Strongly birefringent metamaterials as negative index terahertz wave plates. Applied Physics Letters, 2009, 95(17): 171104
https://doi.org/10.1063/1.3253414
|
| 68 |
Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 2011, 334(6054): 333–337
https://doi.org/10.1126/science.1210713
pmid: 21885733
|
| 69 |
Zhang X, Tian Z, Yue W, Gu J, Zhang S, Han J, Zhang W. Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities. Advanced Materials, 2013, 25(33): 4567–4572
https://doi.org/10.1002/adma.201204850
pmid: 23787976
|
| 70 |
Neu J, Beigang R, Rahm M. Metamaterial-based gradient index beam steerers for terahertz radiation. Applied Physics Letters, 2013, 103(4): 041109
https://doi.org/10.1063/1.4816345
|
| 71 |
Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R, Chen H T. Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science, 2013, 340(6138): 1304–1307
https://doi.org/10.1126/science.1235399
pmid: 23686344
|
| 72 |
Cong L Q, Cao W, Zhang X Q, Tian Z, Gu J Q, Singh R, Han J G, Zhang W L. A perfect metamaterial polarization rotator. Applied Physics Letters, 2013, 103(17): 171107
https://doi.org/10.1063/1.4826536
|
| 73 |
Cong L Q, Xu N N, Gu J Q, Singh R, Han J G, Zhang W L. Highly flexible broadband terahertz metamaterial quarter-wave plate. Laser & Photonics Reviews, 2014: Early View
|
| 74 |
Hu D, Wang X K, Feng S F, Ye J S, Sun W F, Kan Q, Klar P J, Zhang Y. Ultrathin terahertz planar elements. Advanced Optical Materials, 2013, 1(2): 186–191
https://doi.org/10.1002/adom.201200044
|
| 75 |
Jiang X Y, Ye J S, He J W, Wang X K, Hu D, Feng S F, Kan Q, Zhang Y. An ultrathin terahertz lens with axial long focal depth based on metasurfaces. Optics Express, 2013, 21(24): 30030–30038
https://doi.org/10.1364/OE.21.030030
pmid: 24514553
|
| 76 |
Burckel D B, Wendt J R, Ten Eyck G A, Ginn J C, Ellis A R, Brener I, Sinclair M B. Micrometer-scale cubic unit cell 3D metamaterial layers. Advanced Materials, 2010, 22(44): 5053–5057
https://doi.org/10.1002/adma.201002429
pmid: 20941794
|
| 77 |
Randhawa J S, Gurbani S S, Keung M D, Demers D P, Leahy-Hoppa M R, Gracias D H. Three-dimensional surface current loops in terahertz responsive microarrays. Applied Physics Letters, 2010, 96(19): 191108
https://doi.org/10.1063/1.3428657
|
| 78 |
Soukoulis C M, Wegener M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nature Photonics, 2011, 5(9): 523–530
|
| 79 |
Moser H O, Rockstuhl C. 3D THz metamaterials from micro/nanomanufacturing. Laser & Photonics Reviews, 2012, 6(2): 219–244
https://doi.org/10.1002/lpor.201000019
|
| 80 |
Choi M, Lee S H, Kim Y, Kang S B, Shin J, Kwak M H, Kang K Y, Lee Y H, Park N, Min B. A terahertz metamaterial with unnaturally high refractive index. Nature, 2011, 470(7334): 369–373
https://doi.org/10.1038/nature09776
pmid: 21331038
|
| 81 |
Kadow C, Fleischer S B, Ibbetson J P, Bowers J E, Gossard A C, Dong J W, Palmstrom C J. Self-assembled ErAs islands in GaAs: Growth and subpicosecond carrier dynamics. Applied Physics Letters, 1999, 75(22): 3548–3550
https://doi.org/10.1063/1.125384
|
| 82 |
Chen H T, Padilla W J, Zide J M O, Bank S R, Gossard A C, Taylor A J, Averitt R D. Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices. Optics Letters, 2007, 32(12): 1620–1622
https://doi.org/10.1364/OL.32.001620
pmid: 17572725
|
| 83 |
Roy Chowdhury D, Singh R, O’Hara J F, Chen H T, Taylor A J, Azad A K. Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor. Applied Physics Letters, 2011, 99(23): 231101
https://doi.org/10.1063/1.3667197
|
| 84 |
Takano K, Shibuya K, Akiyama K, Nagashima T, Miyamaru F, Hangyo M. A metal-to-insulator transition in cut-wire-grid metamaterials in the terahertz region. Journal of Applied Physics, 2010, 107(2): 024907
https://doi.org/10.1063/1.3284958
|
| 85 |
Gu J, Singh R, Liu X, Zhang X, Ma Y, Zhang S, Maier S A, Tian Z, Azad A K, Chen H T, Taylor A J, Han J, Zhang W. Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nature Communications, 2012, 3: 1151
https://doi.org/10.1038/ncomms2153
pmid: 23093188
|
| 86 |
Roy Chowdhury D, Singh R, Taylor A J, Chen H T, Azad A K. Ultrafast manipulation of near field coupling between bright and dark modes in terahertz metamaterial. Applied Physics Letters, 2013, 102(1): 011122
https://doi.org/10.1063/1.4774003
|
| 87 |
Chen H T, O’Hara J F, Azad A K, Taylor A J, Averitt R D, Shrekenhamer D B, Padilla W J. Experimental demonstration of frequency-agile terahertz metamaterials. Nature Photonics, 2008, 2(5): 295–298
https://doi.org/10.1038/nphoton.2008.52
|
| 88 |
Shen N H, Kafesaki M, Koschny T, Zhang L, Economou E N, Soukoulis C M. Broadband blueshift tunable metamaterials and dual-band switches. Physical Review B, 2009, 79(16): 161102
https://doi.org/10.1103/PhysRevB.79.161102
|
| 89 |
Shen N H, Massaouti M, Gokkavas M, Manceau J M, Ozbay E, Kafesaki M, Koschny T, Tzortzakis S, Soukoulis C M. Optically implemented broadband blueshift switch in the terahertz regime. Physical Review Letters, 2011, 106(3): 037403
https://doi.org/10.1103/PhysRevLett.106.037403
pmid: 21405297
|
| 90 |
Zhang S, Zhou J, Park Y S, Rho J, Singh R, Nam S, Azad A K, Chen H T, Yin X, Taylor A J, Zhang X. Photoinduced handedness switching in terahertz chiral metamolecules. Nature Communications, 2012, 3: 942
https://doi.org/10.1038/ncomms1908
pmid: 22781755
|
| 91 |
Zhang S, Park Y S, Li J, Lu X, Zhang W, Zhang X. Negative refractive index in chiral metamaterials. Physical Review Letters, 2009, 102(2): 023901
https://doi.org/10.1103/PhysRevLett.102.023901
pmid: 19257274
|
| 92 |
Zhou J F, Chowdhury D R, Zhao R K, Azad A K, Chen H T, Soukoulis C M, Taylor A J, O’Hara J F. Terahertz chiral metamaterials with giant and dynamically tunable optical activity. Physical Review B, 2012, 86(3): 035448
https://doi.org/10.1103/PhysRevB.86.035448
|
| 93 |
Fan K B, Zhao X G, Zhang J D, Geng K, Keiser G R, Seren H R, Metcalfe G D, Wraback M, Zhang X, Averitt R D. Optically tunable terahertz metamaterials on highly flexible substrates. IEEE Transactions on Terahertz Science and Technology, 2013, 3(6): 702–708
https://doi.org/10.1109/TTHZ.2013.2285619
|
| 94 |
Chen H T, Padilla W J, Zide J M O, Gossard A C, Taylor A J, Averitt R D. Active terahertz metamaterial devices. Nature, 2006, 444(7119): 597–600
https://doi.org/10.1038/nature05343
pmid: 17136089
|
| 95 |
Chen H T, Padilla W J, Cich M J, Azad A K, Averitt R D, Taylor A J. A metamaterial solid-state terahertz phase modulator. Nature Photonics, 2009, 3(3): 148–151
https://doi.org/10.1038/nphoton.2009.3
|
| 96 |
Chen H T, Palit S, Tyler T, Bingham C M, Zide J M O, O’Hara J F, Smith D R, Gossard A C, Averitt R D, Padilla W J, Jokerst N M, Taylor A J. Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves. Applied Physics Letters, 2008, 93(9): 091117
https://doi.org/10.1063/1.2978071
|
| 97 |
Shrekenhamer D, Rout S, Strikwerda A C, Bingham C, Averitt R D, Sonkusale S, Padilla W J. High speed terahertz modulation from metamaterials with embedded high electron mobility transistors. Optics Express, 2011, 19(10): 9968–9975
https://doi.org/10.1364/OE.19.009968
pmid: 21643254
|
| 98 |
Chen H T, Lu H, Azad A K, Averitt R D, Gossard A C, Trugman S A, O’Hara J F, Taylor A J. Electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays. Optics Express, 2008, 16(11): 7641–7648
https://doi.org/10.1364/OE.16.007641
pmid: 18545471
|
| 99 |
Paul O, Imhof C, L?gel B, Wolff S, Heinrich J, H?fling S, Forchel A, Zengerle R, Beigang R, Rahm M. Polarization-independent active metamaterial for high-frequency terahertz modulation. Optics Express, 2009, 17(2): 819–827
https://doi.org/10.1364/OE.17.000819
pmid: 19158896
|
| 100 |
Peralta X G, Brener I, Padilla W J, Young E W, Hoffman A J, Cich M J, Averitt R D, Wanke M C, Wright J B, Chen H T, O’Hara J F, Taylor A J, Waldman J, Goodhue W D, Li J, Reno J. External modulators for terahertz quantum cascade lasers based on electrically-driven active metamaterials. Metamaterials, 2010, 4(2–3): 83–88
https://doi.org/10.1016/j.metmat.2010.04.005
|
| 101 |
Chan W L, Chen H T, Taylor A J, Brener I, Cich M J, Mittleman D M. A spatial light modulator for terahertz beams. Applied Physics Letters, 2009, 94(21): 213511
https://doi.org/10.1063/1.3147221
|
| 102 |
Shrekenhamer D, Montoya J, Krishna S, Padilla W J. Four-color metamaterial absorber THz spatial light modulator. Advanced Optical Materials, 2013, 1(12): 905–909
https://doi.org/10.1002/adom.201300265
|
| 103 |
Karl N, Reichel K, Chen H T, Taylor A J, Brener I, Benz A, Reno J L, Mendis R, Mittleman D M. An electrically driven terahertz metamaterial diffractive modulator with more than 20 dB of dynamic range. Applied Physics Letters, 2014, 104(9): 091115
https://doi.org/10.1063/1.4867276
|
| 104 |
Fan K, Hwang H Y, Liu M, Strikwerda A C, Sternbach A, Zhang J, Zhao X, Zhang X, Nelson K A, Averitt R D. Nonlinear terahertz metamaterials via field-enhanced carrier dynamics in GaAs. Physical Review Letters, 2013, 110(21): 217404
https://doi.org/10.1103/PhysRevLett.110.217404
pmid: 23745933
|
| 105 |
Scalari G, Maissen C, Turcinková D, Hagenmüller D, De Liberato S, Ciuti C, Reichl C, Schuh D, Wegscheider W, Beck M, Faist J. Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial. Science, 2012, 335(6074): 1323–1326
https://doi.org/10.1126/science.1216022
pmid: 22422976
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|